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Abstract

Mining-method selection (MMS) is one of the most critical and complex decision-making processes in mine planning.
Therefore, it has been a subject of several studies for many years culminating with the development of different systems.
However, there is still more to be done to improve and/or create more efficient systems and deal with the complexity
caused by many influencing factors. This study introduces the application of the entropy method for feature selection,
i.e., select the most critical factors in MMS. The entropy method is applied to assess the relative importance of the factors
influencing MMS by estimating their objective weights to then select the most critical. Based on the results, ore strength,
host-rock strength, thickness, shape, dip, ore uniformity, mining costs, and dilution were identified as the most critical
factors. This study adopts the entropy method in the data preparation step (i.e., feature selection) for developing a novel-
MMS system that employs recommendation system technologies. The most critical factors will be used as main variables
to create the dataset to serve as a basis for developing the model for the novel-MMS system. This study is a key step to
optimize the performance of the model.

Keywords: mine planning, decision-making, multi-criteria, feature selection, objective weight

1. Introduction

T he success of a mining project relies heavily on
the feasibility of the adopted mining method

that maximises profits and recovery of mineral re-
sources while minimising environmental impacts.
For this purpose, different mining methods are used
by mining engineers to extract or recover mineral
resources from the earth. Surface and underground
mining are the two most common types of mining
methods. During the mine planning and design
processes, the selection of the best mining method
or combinations of multiple mining methods is the
most critical and complex decision-making task.
Moreover, the adoption of a certain mining
method can be an irreversible decision owing to

the high costs involved in changing or replacing
the mining method during the production stage
[1]. Therefore, the mining-method selection (MMS)
task requires the engagement of experienced
mining engineers. Additionally, this process is
considered complex and somewhat problematic
because the selection of the most feasible mining
method requires the consideration of several fac-
tors, including historical, social, and cultural factors,
mechanical and physical characteristics of the ore-
body, geological and geographical conditions, as
well as technological, economic, and environmental
factors. Moreover, owing to the complexity of
the physical characteristics and geological condi-
tions of an orebody deposit, the extraction of the
entire orebody by using a single mining method is
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almost impossible [1]. The factors that highly influ-
ence the selection of the surface and underground
mining methods are categorised as follows [2,3]:

� Physical characteristics of the orebody deposit
(orebody geometry): the size of the orebody
(height, width, and thickness), orebody shape,
orebody dip, and depth of the orebody below the
surface. These factors are considered to be the
most critical in choosing between surface and
underground methods because they affect the
entire mine design and production.

� Geomechanical properties, and geological and
hydrologic conditions: rock material properties
(strength, deformation, and weathering charac-
teristics), grade distribution/ore uniformity,
mineralogy, and petrology. These factors include
the mechanical and structural geological com-
positions of the orebody and host rock. They
play a significant role in the selection of different
classes (i.e., unsupported, supported, and caving
methods) of underground mining methods as
well as in the selection of the ground support.

� Economic factors: comparative capital and min-
ing costs of suitable methods, reserves (tonnage
and grade), mine life, production rate, and pro-
ductivity. These factors play an important role
during the final decision-making process of
MMS, determining the feasibility of the methods
based on financial and economic analyses.

� Technological factors include recovery, selec-
tivity, dilution, flexibility of the method to
changing conditions, mechanisation or automa-
tisation, and labour intensity. These factors are
mostly related to the effects of mining methods
on subsequent operations, such as processing
requirements, treatment, and smelting.

� Environmental considerations: subsidence, sta-
bility of openings, and health and safety. These
factors are interconnected to social, political,
historical, and geographical factors, and affect
the rejection or acceptance of the method in
a certain location.

Over many years, MMS has been the focus of
numerous studies. The first MMS systems were
developed during the 1970s and 1980s [4,5]. The first
systems were called qualitative systems, as they
were basically flowcharts that served as guidelines
for selecting the most suitable mining methods.
Subsequently, quantitative systems were introduced
to improve the qualitative systems. Quantitative
systems determine the most feasible mining method
by numerically ranking the influencing factors,
which are then summed. The best methods are

those with higher ranks. However, the relative
importance of the influencing factors is not consid-
ered in these systems; thus, multi-criteria decision-
making (MCDM)-based MMS systems were intro-
duced. In MCDM-based systems, the feasibility of
the methods is assessed based on the relative
importance of the influencing factors that are often
measured subjectively, i.e., based on the direct
subjective opinions and professional judgements of
mining engineering experts. The applicability of
MCDM techniques in MMS has been proven to be
effective owing to their ability to solve problems
involving several and conflicting criteria, and MMS
is classified by several conflicting factors [6e10].
Moreover, the most difficult and complex task in
MCDM is to determine the relative importance of
the criteria.
As it is evident, several studies have been done in

the field of MMS culminating with the develop-
ment of different systems. However, there is still
more to be done to improve and/or create systems
that are more efficient and deal with the complexity
caused by many influencing factors. This study
adopts the entropy method in the data preparation
step (i.e., feature selection) for developing a novel
mining-method selection (novel-MMS) system that
employs recommendation system [11] technolo-
gies. Recommendation systems use different ma-
chine learning algorithms to generate models
aimed to make recommendations of the most
relevant items to the users based on user(s) his-
torical information. Thus, recommendation sys-
tems find an important application in different
business areas and, have proven to improve and/or
optimize the decision-making process and quality,
hence, boost profits and save costs [12]. Data
preparation is one of the most complex, trouble-
some, and critical steps in the development of a
recommendation system. This step consists of
readying a dataset that will be used as a base for
the training and implementation of the models, in
which, feature selection is one of the processes
involved. Many factors need to be considered
during MMS and, using all factors as input vari-
ables in the dataset would negatively affect the
performance of the novel-MMS model; hence, the
need to identify and select the most critical factors
(i.e., features/input variables). In machine learning
different methods are used for feature selection to
reduce the number of features in a dataset by
selecting the most critical features, thus, improving
the performance of the prediction models and
reduce computation time [13,14]. However, these
methods usually require a dataset with a big
amount of historical data to effectively analyse
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features correlation and identify the most critical
features. Getting a fair amount of information
about mining projects, specifically related to MMS
influential factors is one of the most difficult and
challenging aspects, thus, a huge limitation of the
study. Hence, this paper presents the application of
the entropy method for feature selection. The en-
tropy method is applied to assess the relative
importance of the factors affecting MMS by deter-
mining their objective weights. Then, based on
objective weights, unimportant factors are reduced
and the most critical are selected. The most critical
factors will be used as main variables to create the
input dataset to serve as a basis for developing the
model for the novel-MMS system.
The entropy method is considered suitable owing

to its advantage of not requiring a huge amount of
historical data to analyse the relative importance of
the factors (i.e., features correlation). Furthermore,
this method has the advantage of determining
criteria (i.e., factors or features) weights without
direct involvement (i.e., opinion or judgement) of
decision-makers [15]. The objective weights of the
factors are determined based on a decision matrix
containing raw information, i.e., rates measuring the
performance of the mining methods with respect to
various factors. The information in the decision
matrix is obtained subjectively based on literature.
The use of the entropy method prevents any bias
that could be caused by direct subjective decision-
making in estimating MMS influencing factor
weights, which, and may thus affect the accuracy of
the results.
The remainder of this paper is organised into five

main sections. Section 2 presents a review of the
literature on different MMS systems, including the
qualitative, quantitative, and MCDM-based sys-
tems. In Section 3, we introduce MCDM techniques
and explain the application and procedures of the
entropy method to estimate multi-criteria weights.
Section 4 demonstrates the application of the en-
tropy method to estimate the weights of MMS
influencing factors. The results of the application of
the entropy method are presented in Section 5.
Finally, the discussion and concluding remarks are
presented in Section 6.

2. Mining methods selection (MMS) systems

2.1. Qualitative MMS systems

Various researchers, including Boscov and Wright
in 1973, Morrison in 1976, Laubscher in 1981, and
Hartman in 1987, proposed the first qualitative
MMS systems [4,5].

The systems proposed by Boscov and Wright,
Morrison and Laubscher can be applied to under-
ground mining methods but differ in the category of
factors considered in each system. Boscov and
Wright proposed a system based on the physical
and mechanical characteristics of the orebody (i.e.,
thickness, orebody dip, and strengths of the ore and
host rock). The system suggested by Morrison is
based on the orebody width, underground mine
support types, and strain-energy accumulation.
Laubscher proposed a system based on geotechnical
parameters (rock-mass classification) aimed at mass
underground mining methods [5].
The system proposed by Hartman is relatively

similar to that proposed by Boscov and Wright,
which is based on the physical characteristics of the
orebody and the mechanical characteristics of the
ore zone (i.e., shape, dip, size, and strength of the
orebody) but targets both surface and underground
methods [4].

2.2. Quantitative MMS systems

In 1981, Nicholas developed the first quantitative
MMS system based on orebody geometry, grade
distribution, and the mechanical characteristics of
the orebody and host rock to select the most suitable
mining methods [5]. In this system, numerical ranks
are assigned to all factors to indicate the suitability
of each factor for each mining method. Then, the
ranks are summed for each mining method, and the
method with the highest rank is selected as the most
suitable method and submitted for economic eval-
uation [4,5]. Furthermore, to improve Nicholas'
approach, an MMS tool was developed by the
University of British Columbia (UBC) [16]. The UBC
tool is a modified version of Nicholas' approach,
with the introduction of some mechanical properties
and ranks as well as modification of most of the
factor ranks. Although the UBC approach is the
latest and most common quantitative system, it
emphasizes underground stoping methods and best
represents Canadian mine design practices. More-
over, in both Nicholas’ and UBC approaches, the
relative importance of the factors is not considered,
implying that all factors have the same degree of
importance.

2.3. MCDM-based MMS systems

Currently, the trend involves the application of
MCDM techniques in MMS. As several factors are
related to MMS, the formulation of definite criteria
for selecting methods that can simultaneously
satisfy all conditions of the mining becomes
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complicated [17]. Therefore, several researchers
developed MMS methodologies by applying
MCDM techniques, wherein the relative importance
of the factors is considered. Bitarafan and Ataei [17]
applied fuzzy decision-making tools (fuzzy domi-
nance and fuzzy multiple attribute decision-making
methods) to select the best mining method for
anomaly No. 3 of the Gol-Gohar iron mine, where
the weights of criteria (i.e., influencing factors) and
alternatives (i.e., mining methods) are determined
in a fuzzy environment based on the most suitable
mining method, i.e., block caving. Ataei et al. [16]
explored the application of the analytical hierarchy
process (AHP) technique to develop a suitable
mining method for the Golbini No. 8 deposit. Their
technique was applied to determine criteria weights
as well as the best alternative, and therefore AHP
was found to be a unique model in that it could
identify multiple criteria, minimal data require-
ment, and minimal time consumption. Namin et al.
[7] discussed the application of a decision-making
tool based on the fuzzy technique for order of
preference by similarity to ideal solution (TOPSIS)
to develop the MMS tool for the Gol-e-Gohar
anomaly No. 3 and Chahar Gonbad deposit. In this
case, the open-pit method was identified as the best
method for the deposit and the systematic evalua-
tion of fuzzy TOPSIS of MMS was determined to
reduce the risk of a poor choice. Alpay and Yavuz [8]
developed a tool based on AHP and Yager's tech-
niques to develop a computer program to analyse
underground MMS problems for the
EskisehireKaraburun chromite ore. The computer
program could also enable decision-makers to
perform sensitivity analyses after selecting the best
method to observe the rate proposed method ac-
cording to criteria weights. Azadeh et al. [1] devel-
oped a modified version of Nicholas' approach by
using a fuzzy analytical hierarchy process (FAHP) to
select the most appropriate mining method for the
anomaly of the Choghart iron mine. In their
approach, FAHP was applied to determine and
modify criteria weights according to Nicholas'
approach, and thus determine the most suitable
method considering these criteria weights. Bogda-
novic et al. [6] implemented an integrated approach
that employed the AHP and preference-ranking
organisation method for enrichment evaluations
(PROMETHEE) to select the most suitable mining
method for the Coka Marin underground mine. In
their approach, AHP was used to assign criteria
weights, while PROMETHEE was used to complete
the ranking of the alternatives; sublevel caving was
identified as the most suitable method. Shariati et al.
[6] developed an integrated model based on FAHP

and TOPSIS to select the optimum mining methods
for the Angouran Mine; criteria weights were
determined based on FAHP, and TOPSIS was
applied to analyse the feasible alternatives, and the
alternative with the highest score was selected fol-
lowed by sensitivity analyses to determine the in-
fluence of criteria weights. The advantage of
MCDM-based MMS methodologies is the consid-
eration of the relative importance of the factors that
are mostly determined subjectively. Furthermore,
most MCDM-based methodologies are based on a
specific case study, wherein the opinion and
judgement of mining engineer experts are crucial to
determine the subjective weights of the factors.

3. Multi-criteria decision-making (MCDM)
methods

MCDM is a branch of operations research (OR)
that attempts to solve real-life problems that involve
different alternatives by considering several con-
flicting criteria to achieve specific goals. MCDM
attempts to solve problems of selecting an alterna-
tive from a set of alternatives under several criteria,
typically aiming at a single goal [18]. There are
different MCDM techniques, all aiming towards
breaking down complicated decisions into smaller
decisions that can be analysed individually and then
recombined into a weighted-sum utility score [15].
To overcome these problems, the decision maker's
team performs the decision-making process based
on the hierarchical structure model, wherein the
first step is to define the goal and then identify the
alternatives for achieving the goal and the criteria
used to compare the alternatives [19]. Based on the
hierarchical structure model shown in Fig. 1, a de-
cision matrix (DM) composed of a set of m alterna-
tives evaluated based on n decision criteria and the
respective decision data were set up. During this
process, criteria are weighted subjectively or objec-
tively [15].
MCDM techniques evaluate the performance of

different alternatives based on the criteria weights,
wherein thebest alternative is selected as the onewith
the highest performance rates. The weights of each

Fig. 1. Decision-making problem hierarchical structure model.
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criterion express their relative importance for the
decision. Typically, decision-makers may define and
assign subjective weights to each criterion based on
their intuition and judgement, most commonly using
methods, such as the utility preferences function,
AHP, and fuzzy version of classical linear weighted
averages [18]. However, often, decision-makers have
conflicting views on the values of weights or are
simply uncertain of the relative importance of each
criterion. In this case, the entropy method [20] is
applied to determine the objective weights of each
criterion based on the DM data, wherein the prefer-
ences or judgement of decision-makers are
completely or partially unavailable or even not
required [21]. The entropy method also called Shan-
non's entropy [20], is a technique applied inMCDMto
estimate objective criteria weights.

3.1. Entropy method to estimate criteria weights

The term entropy is applied in different scientific
fields (e.g., physics, chemistry, biology, mathe-
matics, psychology, and information theory); in in-
formation theory, this term plays an important role
in measuring the uncertainty associated with
random phenomena of the expected information
content of a certain message [22]. The MCDM en-
tropy method is applied to measure the relative
importance of criteria based on DM generated from
the hierarchical model. Fig. 2 illustrates the flow-
chart of the overall procedures of the entropy
method, wherein the first step involves the genera-
tion of the DM of the problem as follows:

DM¼

2
64
x11 x12

x21 x22

… x1n

… x2n

… …

xm1 xm2

… …

… xmn

3
75; ð1Þ

where xij is the criteria/sub-criteria rate, n is the
number of criteria/sub-criteria, and m is the number
of alternatives.
In the second step, the DM data are normalized by

applying Equation (2) to make all the criteria com-
parable by transforming different scales and units
among several criteria into common measurable
units [21]:

rij¼
xijPn
j¼1xij

; i¼ 1;2…;m; j¼ 1;2…n; ð2Þ

where rij is the normalized criteria/sub-criteria rate.
Then, the entropy (Ej) values are computed by

applying Equation (3). The entropy value measures
the degree of uncertainty between the set of alter-
natives in the DM when no preference among
criteria can be established [15,21,23].

Ej¼ � h
Xm
i¼1

rijlnðrijÞ; j¼ 1;2;…;n;h¼ 1
lnðmÞ; ð3Þ

where rijln(rij)¼ 0 if rij¼ 0 and h is the entropy
constant.
The fourth step is to calculate the diversity (Dj) or

the degree of diversification based on the entropy
values using Equation (4). Diversity measures the

Fig. 2. Procedures of the entropy method.
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level of diversity of the evaluation of a set of alter-
natives for the same criterion [10,21,24]. In other
words, diversity measures the variation or the de-
gree of dispersion between the rates of different
alternatives for the same criterion. The higher the
variation or dispersion the higher the diversity, and,
the more valuable is the criterion:

Dj¼1� Ej: ð4Þ
Finally, the relative importance of the criteria,

which are measured by the objective weight, is
calculated based on Equation (5). The relative
importance of the criteria is directly related to the
amount of data essentially provided by a set of al-
ternatives for the same criterion [21,23]:

wj¼
DjPn
j¼1Dj

; j¼ 1;2;…;n; ð5Þ

where wj is the degree of importance of criterion j or
object weight of criterion j.

4. Application of the entropy method to
estimate factor weights for mining method
selection (MMS)

As MMS is a decision-making process that in-
volves several conflicting factors (or criteria) for the
selection of different mining methods (or alterna-
tives), it is an appropriate method, considering the
complexity of this task. For this reason, MCDM
techniques have been applied in the MMS process,
and several researchers [1,6e10], [17,18,25,26] have
proven the advantages and applicability of different
MCDM techniques. In MCDM the most complex
task is to define the relative importance of the
criteria which is commonly defined subjectively.
That is, criteria weights are defined based on direct
opinion and judgement of decision-makers or
mining engineer experts. However, when direct
opinions or judgement from decision-makers are
unavailable (or not required), objective weights are
considered the best option. Therefore, in this study,
the entropy method was applied as a tool for feature
selection, i.e., to analyse and select the most critical
factors in MMS. The entropy method measures the
relative importance of the factors influencing MMS
by calculating their objective weights.

� Decision matrix (DM)

Table 1 present the DM created based on the
approaches proposed by Miller et al. [15], de-
velopers of the UBC MMS tool, and Hartman and
Mutmansky [2], who created a guideline base to

compare different surface and underground mining
methods. The DM is a classification system for
different surface and underground mining methods,
and it provides guidelines to select the most suitable
mining methods; its main characteristics include the
classification of factors for the MMS according to
each mining method. Since the study aims to assess
the relative importance of factors involved in the
selection of both surface and underground mining
methods, 12 mining methods or alternatives (A)
included in both surface and underground methods
were considered to create the DM: block caving
(A1), open-pit (A2), shrinkage stoping (A3), square
set (A4), longwall (A5), solution mining (A6), sub-
level stoping (A7), sublevel caving (A8), open-cast
(A9), cut and fill (A10), stull stoping (A11), and room
and pillar (A12). In addition, the factors, or criteria
(c) considered are described below [4,5,27e31]:

� Host rock strength (c1):

This factor is related to the properties of the rock
surrounding the ore deposit, measuring the hard-
ness or toughness of the rock against permanent
deformation. The strength of the rock (host and ore)
can be from very weak, weak, fair, strong and very
strong. Understanding host rock strength is crucial
in MMS to ensure the safety and stability of open-
ings (in surface and underground mining). Host
rock properties play a huge role in the selection of
different classes of underground mining methods
(i.e., supported, unsupported and caving). Further-
more, to determine pit slopes angle (in surface
mining) and the support systems (in underground
mining).

� Ore strength (c2):

Ore strength is related to the mechanics of the ore
or even ore properties. In the selection of both
surface and underground mining methods is crucial
to understand the properties of the ore to determine
the extraction methods (i.e., mechanical or blasting),
the support systems, for equipment selection, and
the stability of openings.

� Ore uniformity (c3):

Ore uniformity is a geological factor correspond-
ing to ore grade distribution throughout the ore
deposit. Ore uniformity is determined based on ore
grade variation from the average grade within the
ore deposit. The distribution of the ore can be var-
iable/erratic, gradational and uniform. It is variable
when the grade values within the deposit change
radically over a short distance and don't show any
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perceptible pattern in their changes. Gradational
when grade values at any point within the deposit
have zonal characteristics, and the grades change
gradually from one to another. Uniform when grade
values at any point within the deposit doesn't vary

significantly from the average grade. It is important
to understand the distribution of the ore to select the
most suitable mining method to ensure high selec-
tivity and recovery and low dilution. Additionally,
this factor is directly related to the selectivity of

Table 1. DM based on [2,16] approaches.

Host rock strength Ore strength Ore uniformity Depth Shape

Block caving Weak-fair Weak-fair Gradational Moderate-deep Tabular-equidimensional
Open-pit Any Any Any Shallow Any
Shrinkage stoping Strong-very strong Fair-strong Uniform Shallow-moderate Tabular
Square set Weak-fair Very weakeweak Erratic Deep Irregular
Longwall Weak-fair Very weakeweak Uniform Moderate-deep Tabular
Solution mining Weak-fair Weak-fair Erratic Shallow Any
Sublevel stoping Strong-very strong Fair-strong Gradational Moderate Tabular
Sublevel caving Weak-fair Weak-fair Gradational Moderate Tabular-equidimensional
Open-cast Any Any Gradational Shallow Tabular
Cut and fill Weak-fair Fair-strong Erratic Moderate-deep Irregular-tabular
Stull stoping Fair Strong-very strong Erratic Moderate Irregular-tabular
Room and pillar Faire-strong Weak-fair Gradational Shallow-moderate Tabular

Dip Thickness Health and safety Stability of openings Recovery

Block caving Steep Very thick Good Moderate High
Open-pit Flat-Intermediate Thick-very thick Good High High
Shrinkage stoping Steep Narrow-intermediate Good High High
Square set Any Very narrowenarrow Poor High Very high
Longwall Flat Very narrowenarrow Good High High
Solution mining Steep Any Good Moderate Very low
Sublevel stoping Steep Intermediate-thick Good High Moderate
Sublevel caving Steep Thick-very thick Good Moderate High
Open-cast Flat Moderate Good High High
Cut and fill Intermediate-steep Narrow-intermediate Moderate High High
Stull stoping Intermediate-steep Narrow Moderate Moderate High
Room and pillar Flat Narrow Good Moderate Moderate

Flexibility Dilution Selectivity Depth capacity Development rate

Block caving Low High Low Moderate Slow
Open-pit Moderate Moderate Low Limited Rapid
Shrinkage stoping Moderate Low Moderate Limited Rapid
Square set High Very low High Unlimited Slow
Longwall Low Low Low Moderate Moderate
Solution mining Low Very high Low Limited Moderate
Sublevel stoping Low Moderate Low Moderate Moderate
Sublevel caving Moderate Moderate Low Moderate Moderate
Open-cast Moderate Low Low Limited Rapid
Cut and fill Moderate Low High Moderate Moderate
Stull stoping High Low High Limited Rapid
Room and pillar Moderate Moderate Low Limited Rapid

Productivity Ore grade Mining cost Production rate Capital investment

Block caving High Moderate Low Large High
Open-pit High Low Very low Large High
Shrinkage stoping Low Moderate Moderate-high Moderate Low
Square set Low High Very high Small Low
Longwall High Low Low Large High
Solution mining Very high Very low Low Moderate Moderate
Sublevel stoping High Low-moderate Moderate Large Moderate
Sublevel caving Moderate Moderate Low Large Moderate
Open-cast High Low Low Large High
Cut and fill Moderate High High Moderate Moderate
Stull stoping Low High-very high High Small Low
Room and pillar High Low-moderate Moderate Large High
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a mining method, i.e., the poor the ore distribution
the more selective the mining method should be.

� Depth (c4):

This factor corresponds to the depth of the ore de-
posit relative to the surface ground. An ore deposit
can be shallow (<100m), intermediate (100e600m)
and deep (>600m). Depth is usually a key factor to
select between surface and underground methods.
For surface, deposits depth is applied to decide be-
tween casting the waste (in open-cast) or haulage the
waste to dump sites (in open-pit) as well as applying
solution mining. Additionally, some underground
methods are less suitable for deep deposits owing to
the limited depth capacity.

� Shape (c5):

Shape refers to the form of the ore deposit which can
usually be tabular, equidimensional/massive and
irregular. Tabular deposits extend at least hundreds of
meters along two dimensions, and substantially less
along a minor dimension. Equidimensional/massive
deposits have all dimensions in the same order of
magnitude. In irregular deposits, the dimensions vary
over short distances. It is important to understand the
oredeposit shape forminingmethodsselectionassome
methods (i.e., longwall, open cast, room and pillar) are
more suitable for tabular deposits than others.

� Dip (c6):

The ore deposit dip is the angle of inclination of
a plane measured downward, perpendicular to the
strike direction. An ore deposit can be flat (<20�),
intermediate (20e55�) and steep (>55�).
The dip is important in the selection of both sur-

face and underground mining methods. In surface
mining, the dip is used to decide between open-cast
(in flat deposits), open pit or solution mining (in
intermediate or steep). Moreover, some under-
ground mining methods (i.e., shrinkage stoping,
sublevel stoping, stull stoping and caving methods)
are more suitable to exploit intermediate or steep
deposits because they rely on gravity for material
flow and cannot be applied in flat deposits.

� Thickness (c7):

This factor refers to one of the three dimensions of
the ore deposit. The thickness can vary throughout ore
deposits being very narrow (<3m), narrow (3e10m),
intermediate (10e30m), thick (30e100m), and very
thick (>100m). The thickness of the ore deposit de-
termines the effectivenessof someminingmethods, as

somemethods (i.e., open pit and caving methods) are
less effective in narrow deposits. Additionally, this
factor affects the mechanization (and equipment se-
lection) and the selectivity of certain miningmethods.

� Health and safety (c8) and stability of openings (c9):

The stability of openings is one of the factors that
determine the health and safety of mining opera-
tions. The health and safety of the mining operators
should be a top priority objective preventing haz-
ards that can be caused by unappropriated mining
methods for a particular ore deposit. Therefore, it is
important to always consider mining methods with
high stability of openings providing good health and
safety conditions.

� Recovery (c10) and dilution (c12):

Recovery is the capability of a mining method to
completely extract valuable ore from the deposit.
Ore recovery is defined as the percentage of mine-
able reserves extracted in the mining process. On
the other hand, dilution is the waste material mixed
with ore during the extraction which is then sent to
the processing plant. Dilution is the percentage of
the waste mined and sent to the processing plant
over the combined total ore and waste material
milled. Recovery and dilution are usually interre-
lated, as some mining methods with high recovery
usually involves contamination of the ore from the
waste. Some mining methods have low recovery
due to the need to leave the ore as structural sup-
port, whilst providing moderate to low dilution.

� Flexibility (c11) and selectivity (c13):

Flexibility refers to the ability of a mining method
in adapting to changes related to mining conditions,
market price and technology throughout the mine
life. Selectivity refers to separate extraction of ore
and waste (or gangue), ensuring complete extraction
of the ore with low dilution. Flexibility marries well
with the selectivity of a mining method to determine
the success of a project. The more flexible and se-
lective, the more effective is the mining method.

� Depth capacity (c14):

This factor measures the capability of the mining
method in terms of ore deposit depth. Mining
methods with limited depth capacity (i.e., open-pit,
open-cast, solution mining, room and pillar, stull
stoping and shrinkage) are not suitable to extract
deep ore deposits, hence, the importance of
considering depth capacity in MMS.
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� Development rate (c15):

Mine development rate is the time (or speed)
spent to undertake operations (i.e., tunnelling,
sinking, crosscutting, drifting, raising, stripping,
construction of mine infrastructures, etc.) that pre-
pare the mine for ore extraction. This factor directly
affects the capital investment because the slower the
development rate the higher the capital costs or
investment. Hence, the importance of considering
this factor during MMS.

� Productivity (c16):

Productivity is the measure of the efficiency or
performance in the mine, in terms of how well/
smart the inputs (labour, materials, equipment,
capital investment, resources) are converted into
outputs (gross output, value-added). This factor in-
volves most of the parameters used to measure the
efficiency of certain mining methods. Therefore, is
crucial to consider productivity during the MMS
process.

� Ore grade (c17):

The grade is used to measure the quality of an
ore deposit, the higher the grade the more valuable is
the deposit. It is important to consider this factor
during the MMS process to ensure the efficiency and
effectiveness of mining operations. Mining methods
with high operating costs are usually applied to high-
grade deposits in order to be economic. Moreover,
large-scale mining methods may be economically
appropriate for low-grade deposits.

� Mining costs (c18) and capital investment (c20):

Mining costs are the expenses (mine development,
rehabilitation, exploration and grade control activ-
ities, material and utility handling, maintenance, and
labour costs) resulting from all operations or activ-
ities necessary to extract the ore. Mining costs are
usually measured in terms of the money necessary to
mine a tonne of material (ore and waste). While
capital investment is the amount of money necessary
to invest in the mining project in order to pursue the
objectives (growing operations and generate reve-
nue). It is crucial to consider these factors during the
MMS process, and, usually, underground mining
methods requires high capital investment.

� Production rate (c19):

The production rate corresponds to the quantity of
material (ore and waste) extracted per hour, day,

month, and year. The production rate of a mine
highly relies on the selected mining method, thus,
the need to consider this factor during the MMS
process. Usually, large scale mining methods have a
higher production rate and low-scale methos have
otherwise.
In the DM, each row describes an alternative (A),

and each column describes the performance of each
alternative against each criterion (c). In addition, the
DM is composed of qualitative values, most of
which are presented in the qualitative classification
system.
However, the entropy method is more effective

and accurate for quantitative criteria values,
wherein some or all pertinent decision data are
available [15]; hence, the qualitative classification
values must be converted into quantitative values.
For this, an appropriate weighting system was
applied, as shown in Fig. 3, which is composed of
10 points, from 0 to 9. First, the qualitative classifi-
cation of the factors belonging to the mechanical
properties and physical characteristics of the ore-
body is transformed into an adequate qualitative
classification to be compatible with the weighing
system, as presented in Table 2. Then, the weighing
system depicted in Fig. 3 is applied to convert all the
qualitative values in Table 1 to quantitative values,
resulting in a numerical DM, as presented in Table
3.

5. Results

By applying Equation (2), the values in the orig-
inal DM in Table 3 are normalized, resulting in
a normalized matrix, as presented in Table 4.
Then, by applying Equations (3)e(5), the entropy

values (Ej), diversity (Dj), and objective weights (Wj)
are generated, as presented in Table 5. The entropy
is indirectly related to the objective weights and is
typically measured from 0 to 1. Therefore, the closer
the entropy value is to 1, the higher the level of
uncertainty and the smaller the objective weight of
that criterion. Additionally, diversity is directly
related to the objective weight; therefore, the higher
the diversity in a criterion, the higher the objective
weight of the same criterion. The objective weights
reflect the relative importance of each factor (or
criterion) in the selection of the 12 mining methods
(or alternatives). In this case, the results show that
the factors possess a different degree of importance,
with a few more important than the others.
Furthermore, mechanical properties, such as the
strengths of the ore and host rock, have the highest
diversity, and thus the highest degree of importance
among all factors. Environmental considerations,
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such as health and safety and the stability of open-
ings have the lowest diversity, i.e., the lowest degree
of importance among all factors.

The results from the Entropy method, emphasizes
the different level of impact that the twenty factors
have in the selection of the twelve mining methods.
Furthermore, to identify and select the most critical
influential factors, the deviation concept was then
applied. The deviation was applied to determine
factors with the highest impact in MMS, i.e., the
most critical factors. The deviation of each criterion
weight from the mean weight value is calculated as
follows:

Deviation¼wj �w; w¼
Xwj

n
; ð6Þ

where wj is the weight of each criterion, w is the
mean weight of the criteria set, and n is the number
of criteria.
The overall mean weight (w) was 0.05. Based on

this mean weight, the deviation of each
criterion weight from the mean weight was calcu-
lated. Fig. 4 depicts the results of the factors with the
lowest and highest levels of impact in MMS based
on the deviation concept. Moreover, based on the
deviation concept, the criteria with an objective
weight smaller than the mean weight produce
negative deviation values and are considered to
have the lowest level of impact. Furthermore,
criteria with an objective weight higher than the
mean weight produce positive deviation values and
hence are considered to have the highest level of
impact on MMS. Therefore, criteria with higher
weights than the mean weight, and with the small-
est entropy and the highest diversity, were identi-
fied and selected as those with the highest level of
impact. In this case, eight factors were identified,
where ore strength had the highest weight of 0.132,
followed by host-rock strength, thickness, shape,
dip, ore uniformity, mining costs, and dilution with
weights of 0.115, 0.104, 0.100, 0.072, 0.068, 0.061, and
0.057, respectively.

6. Discussion and conclusions

The entropy method is commonly applied in deci-
sion-making problems to determine objective criteria
weights for evaluating the performance of different
alternatives and selecting the optimal one. Therefore,
in this study, decisionmakingwas performedwithout
the direct involvement of decision-makers. The en-
tropy method was applied to assess the relative
importance of the factors for MMS by determining
their objective weights. Then, based on these objec-
tive weights, factors, such as orebody strength, host-
rock strength, orebody thickness, orebody shape,
orebody dip, ore uniformity, mining costs, and

0
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5

7

2

6

9

4

8

Fig. 3. Weighting system to convert qualitative values in DM (Table 1)
into qualitative values in DM (Table 3), where the values 0, 1, 3, 5, 7
and 9 are described and 2, 4, 6 and 8 stand for intermediate value.

Table 2. Transformation of the mechanical properties and physical
characteristics of the orebody qualitative classification system.

Factors Transformation of the factors
classification system

Orebody and host
rock strength

Very weak¼ very poor
Weak¼ poor
Fair¼moderate
Strong¼ good
Very strong¼ very good

Orebody thickness Very narrow¼ very small
Narrow¼ small
Intermediate¼moderate
Thick¼ large
Very thick¼ very large

Orebody shape Irregular¼ unfavourable
Tabular¼ average
Equidimensional¼ favourable

Ore uniformity Erratic/variable¼ poor
Gradational¼moderate
Uniform¼ good

Dip Flat¼ low
Intermediate¼moderate
Steep¼ high

Depth below the surface Shallow¼ low
Intermediate¼moderate
Deep¼ high
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Table 3. DM with quantitative values.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20

A1 4 4 5 6 6 7 9 7 5 7 3 7 3 5 3 7 5 3 7 7
A2 0 0 0 3 0 4 8 7 7 7 5 5 3 3 7 7 3 1 7 7
A3 8 6 7 4 5 7 4 7 7 7 5 3 5 3 7 3 5 6 5 3
A4 4 2 3 7 3 0 2 3 7 9 7 1 7 7 3 3 7 9 3 3
A5 4 2 7 6 5 3 2 7 7 7 3 3 3 5 5 7 3 3 7 7
A6 4 4 3 3 0 7 0 7 5 1 3 9 3 3 5 9 1 3 5 5
A7 8 6 5 5 5 7 6 7 7 5 3 5 3 5 5 7 4 5 7 5
A8 4 4 5 5 6 7 8 7 5 7 5 5 3 5 5 5 5 3 7 5
A9 0 0 5 3 5 3 5 7 7 7 5 3 3 3 7 7 3 3 7 7
A10 4 6 3 6 6 6 4 5 7 7 5 3 7 5 5 5 7 7 5 5
A11 5 8 3 5 6 6 3 5 5 7 7 3 7 3 7 3 8 7 3 3
A12 6 4 5 4 5 3 3 7 5 5 5 5 3 3 7 7 4 5 7 7

Table 4. Normalized DM.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

A1 0.078 0.087 0.098 0.105 0.115 0.117 0.167 0.092 0.068 0.092
A2 0.000 0.000 0.000 0.053 0.000 0.067 0.148 0.092 0.095 0.092
A3 0.157 0.130 0.137 0.070 0.096 0.117 0.074 0.092 0.095 0.092
A4 0.078 0.043 0.059 0.123 0.058 0.000 0.037 0.039 0.095 0.118
A5 0.078 0.043 0.137 0.105 0.096 0.050 0.037 0.092 0.095 0.092
A6 0.078 0.087 0.059 0.053 0.000 0.117 0.000 0.092 0.068 0.013
A7 0.157 0.130 0.098 0.088 0.096 0.117 0.111 0.092 0.095 0.066
A8 0.078 0.087 0.098 0.088 0.115 0.117 0.148 0.092 0.068 0.092
A9 0.000 0.000 0.098 0.053 0.096 0.050 0.093 0.092 0.095 0.092
A10 0.078 0.130 0.059 0.105 0.115 0.100 0.074 0.066 0.095 0.092
A11 0.098 0.174 0.059 0.088 0.115 0.100 0.056 0.066 0.068 0.092
A12 0.118 0.087 0.098 0.070 0.096 0.050 0.056 0.092 0.068 0.066

c11 c12 c13 c14 c15 c16 c17 c18 c19 c20

A1 0.054 0.135 0.060 0.100 0.045 0.100 0.091 0.055 0.100 0.109
A2 0.089 0.096 0.060 0.060 0.106 0.100 0.055 0.018 0.100 0.109
A3 0.089 0.058 0.100 0.060 0.106 0.043 0.091 0.109 0.071 0.047
A4 0.125 0.019 0.140 0.140 0.045 0.043 0.127 0.164 0.043 0.047
A5 0.054 0.058 0.060 0.100 0.076 0.100 0.055 0.055 0.100 0.109
A6 0.054 0.173 0.060 0.060 0.076 0.129 0.018 0.055 0.071 0.078
A7 0.054 0.096 0.060 0.100 0.076 0.100 0.0 0.091 0.100 0.078
A8 0.089 0.096 0.060 0.100 0.076 0.071 0.091 0.055 0.100 0.078
A9 0.089 0.058 0.060 0.060 0.106 0.100 0.055 0.055 0.100 0.109
A10 0.089 0.058 0.140 0.100 0.076 0.071 0.127 0.127 0.071 0.078
A11 0.125 0.058 0.140 0.060 0.106 0.043 0.145 0.127 0.043 0.047
A12 0.089 0.096 0.060 0.060 0.106 0.100 0.073 0.091 0.100 0.109

Table 5. Results of Entropy method application.

Criteria Entropy Diversity Weights

c1 Host rock strength 0.909 0.091 0.115
c2 Ore strength 0.895 0.105 0.132
c3 Ore uniformity 0.946 0.054 0.068
c4 Depth 0.985 0.015 0.019
c5 Shape 0.920 0.080 0.100
c6 Dip 0.943 0.057 0.072
c7 Ore thickness 0.917 0.083 0.104
c8 Health and safety 0.991 0.009 0.011
c9 Stability of openings 0.995 0.005 0.007
c10 Recovery 0.976 0.024 0.030
c11 Flexibility 0.982 0.018 0.022
c12 Dilution 0.955 0.045 0.057
c13 Selectivity 0.968 0.032 0.040

(continued on next page)
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mining-method dilutionwere identified as the factors
with the highest level of impact on MMS. The results
of this study emphasise the significant impact of the
physical characteristics (i.e., thickness, shape, and
dip of the orebody) and mechanical characteristics
(i.e., strengths of the orebody and host rock) of the
orebody as well as ore uniformity on the MMS, as
described in different MMS systems, including
Nicholas' approach [2,4] and the UBCMMS tool [16].
However, the factor of depth, which is considered
important in the UBC tool when selecting between
surface and underground methods, was not found to
be highly important in this study because of its low
diversity in the selection among the 12 mining
methods (surface and underground methods). In
addition, according to the results, researchers must
focus on economic factors (i.e., mining costs) and
technological factors (i.e., dilution), whichmay not be
notably emphasised in the first stage of some of the
MMS systems (i.e., Nicholas’ approach [2,4] and the
UBC MMS tool [16]). Furthermore, the results reveal
that the factors forMMS do not have the same degree
of importance, thereby indicating the need to create
an MMS system that would at least consider the de-
gree of importance of the different influential factors
and emphasise the factors with the highest level of
impact.

This study adopted the entropy method in the
data preparation step (i.e., feature selection) for
developing a novel mining-method selection (novel-
MMS) system that employs recommendation sys-
tem technologies. The entropy method was applied
to analyse the level of impact of factors influencing
MMS then identify the most critical factors/features.
In future, the results of this study will be used as
a foundation to prepare the input dataset for
developing the model for the novel-MMS system.
The factors that are identified as the most critical
will be used as the main variables to create the input
dataset. The respective weights will be used as
a base to decide variables placing sequence and the
weighting system of the attributes of the variables.
The input dataset will be created by mining the
variables attributes from mining company historical
data which are collected from the Sedar1 database
website. This study is a key step for the optimization
of the performance of the model for the novel-MMS
system and the reduction of computational costs.
The Entropy method can analyse features/factors

relative importance without needing a huge amount
of historical data compared to othermachine learning
feature selection methods. Furthermore, this method
enables estimation of the criteria weights without the
direct involvement of decision-makers, thereby

Fig. 4. Results of the factors that have the lowest or the highest impact in MMS based on the mean weight, where the ones with the highest impact are
those with weights greater than the mean.

Table 5. (continued)

Criteria Entropy Diversity Weights

c14 Depth capacity 0.982 0.018 0.023
c15 Development rate 0.985 0.015 0.019
c16 Productivity 0.977 0.023 0.029
c17 Ore grade 0.961 0.039 0.048
c18 Mining cost 0.952 0.048 0.061
c19 Production rate 0.985 0.015 0.019
c20 Capital investment 0.981 0.019 0.024

1 https://www.sedar.com/search/search_en.htm.

JOURNAL OF SUSTAINABLE MINING 2021;XX:296e308 307

R
E
S
E
A
R
C
H

A
R
T
IC

L
E



reducing the risk of bias thatmaybe causedby theuse
of subjective judgements of decision-makers (i.e.,
mining engineering experts). However, analysis from
this method is entirely theoretical (i.e., based only on
the information provided in the DM), which makes it
somehow difficult to explain or interpret. Thus, an
assessment of the relative importance of the influen-
tial factors based on the opinion and judgements of
mining engineering experts might be required.
Moreover, further analysis to compare and/or
combine the results from both objective and subjec-
tive weights might be conducted to improve the
quality of the results.
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