PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fatigue life prediction of wire rope based on grey particle filter method under small sample condition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fatigue life prediction of wire ropes has two main characteristics: a large test sample size and uncertain factors. In this paper, based on the small number of wire rope fatigue life data, the grey particle filter method has been used to realize the fatigue life prediction of wire rope under different load conditions. First, the GOM(1,1) model is constructed and the reliability life data of wire rope is predicted under small sample size. Then, P-S-N curve of the dangerous part is determined by combining the equivalent alternating stress of the dangerous part of the wire rope during the fatigue test. Subsequently, the particle filter method is used to modify P-S-N curve. Finally, the fatigue life prediction model of wire rope is obtained based on fatigue damage accumulation, which realized the fatigue life prediction under different load conditions, and the results were compared with that from the test. The results show that the proposed method is effective and has high accuracy in wire rope fatigue life prediction under single, combined loading conditions and small sample size.
Rocznik
Strony
454--467
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
autor
  • College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
autor
  • Research Institute 704, China Shipbuilding Industry Corporation, CSIC, Shanghai, 200031, P. R. China
autor
  • College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
  • College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
  • College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
  • College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
Bibliografia
  • 1. Cao LL, Cao LL, Guo L, et al. Reliability estimation for drive axle of wheel loader under extreme small sample. Advances in Mechanical Engineering 2019; 11: 3, https://doi.org/10.1177/1687814019836849.
  • 2. Cao X, Wu WG. The establishment of a mechanics model of multi-strand wire rope subjected to bending load with finite element simulation and experimental verification. International Journal of Mechanical Sciences 2018; 142: 289-303, https://doi.org/10.1016/j.ijmecsci.2018.04.051.
  • 3. Chen Y, Su W, Huang HZ, et al. Stress evolution mechanism and thermo-mechanical reliability analysis of copper-filled TSV interposer. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2020; 22(4): 705-714, https://doi.org/10.17531/ein.2020.4.14.
  • 4. D. Battini, L. Solazzi, et al. Prediction of steel wire rope fatigue life based on thermal measurements. International Journal of Mechanical Sciences 2020; 182, https://doi.org/10.1016/j.ijmecsci.2020.105761.
  • 5. Diego Erena, Jesús Vázquez Valeo, et al. Fatigue and fracture analysis of a seven‐wire stainless steel strand under axial and bending loads. Fatigue & Fracture of Engineering Materials & Structures 2019; 43(1):149-161, https://doi.org/10.1111/ffe.13096.
  • 6. Heuler P, Seeger T. A criterion for omission of variable amplitude loading histories. International Journal of Fatigue 1986; 8(4): 225-230, https://doi.org/10.1016/0142-1123(86)90025-3.
  • 7. Huang T, Xiahou T, Li YF, et al. Assessment of wind turbine generators by fuzzy universal generating function. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2021; 23(2): 308-314, https://doi.org/10.17531/ein.2021.2.10.
  • 8. Kastratovic G, Vidanovic N, Grbovic A, et al. Numerical Simulation of Crack Propagation in Seven-Wire Strand. Computer and Experimental Approaches in Materials Science and Engineering 2020; 90: 76-91, https://doi.org/10.1007/978-3-030-30853-7_5.
  • 9. Li YF, Huang HZ, Mi J, et al. Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability. Annals of Operations Research 2019; https://doi.org/10.1007/s10479-019-03247-6.
  • 10. Li YF, Liu Y, Huang T, et al. Reliability assessment for systems suffering common cause failure based on Bayesian networks and proportional hazards model. Quality and Reliability Engineering International 2020; 36(7): 2509-2520, https://doi.org/10.1002/qre.2713.
  • 11. Liu G, Wang D, Hu Z. Application of the Rain-flow Counting Method in Fatigue. International Conference on Electronics 2016, https://doi.org/10.2991/icence-16.2016.50.
  • 12. Mi J, Li YF, Peng W, et al. Reliability analysis of complex multi-state system with common cause failure based on evidential networks. Reliability Engineering & System Safety 2018; 174: 71-81, https://doi.org/10.1016/j.ress.2018.02.021.
  • 13. Mohammad Reza Saberi, Ali Reza Rahai, Masoud Sanayei, et al. Steel Bridge Service Life Prediction Using Bootstrap Method. International Journal of Civil Engineering 2017; 1A: 51-56, https://doi.org/10.1007/s40999-016-0036-z.
  • 14. Peterka P, Krešák J, et al. Failure analysis of hoisting steel wire rope. Engineering Failure Analysis 2014; 45(1):96-105, https://doi.org/10.1016/j.engfailanal.2014.06.005.
  • 15. Tao YW, He LL, Zhang HW, et al. Research on fatigue life prediction method of tower crane based on grey system. Mechanical Science and Technology 2012; 8: 1236-1240.
  • 16. Wahid A, Mouhib N, Kartouni A, et al. Energy method for experimental life prediction of central core strand constituting a steel wire rope. Engineering Failure Analysis 2018; 97: 61-71, https://doi.org/10.1016/j.engfailanal.2018.12.005.
  • 17. Wahid A, Mouhib N, Ouardi A, et al. Experimental prediction of wire rope damage by energy method. Engineering Structures 2019; 201. https://doi.org/10.1016/j.engstruct.2019.109794
  • 18. Wang D, Zhang D, Zhao W, et al. Quantitative analyses of fretting fatigue damages of mine rope wires in different corrosive media. Materials Science & Engineering A 2014; 596(4): 80-88, https://doi.org/10.1016/j.msea.2013.12.047.
  • 19. Zhang D, Feng C, Chen K, et al. Effect of Broken Wire on Bending Fatigue Characteristics of Wire Ropes. International Journal of Fatigue 2017; 103: 456-465, https://doi.org/10.1016/j.ijfatigue.2017.06.024.
  • 20. Zhao D, Gao CX, Zhou Z, et al. Fatigue life prediction of the wire rope based on grey theory under small sample condition. Engineering Failure Analysis 2020, 107(SI), https://doi.org/10.1016/j.engfailanal.2019.104237.
  • 21. Zhao D, Liu SG, Xu Q T, et al. Fatigue life prediction of wire rope based on stress field intensity method. Engineering Failure Analysis 2017; 81: 1-9, https://doi.org/10.1016/j.engfailanal.2017.07.019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e04d6399-1d76-4360-bc6d-9ba1f4fa9576
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.