PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of the front electrode metallisation process on electrical parameters of a silicon solar cell

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper shows that the laser micro-treatment of the silicon elements of solar cells with the different morphology of monocrystalline silicon, including the selective laser sintering of the front electrode to its surface using the CO2 laser, improves the quality by minimising the resistance of a joint between the electrode and the substrate. The influence of the properties achieved for the front electrode on the electrical properties of solar cells was assessed. A front electrode of photovoltaic cells deposited by the traditional screen printing method and by co-firing in the infrared conveyor furnace was prepared for comparative purposes. Design/methodology/approach: The topography of front contacts subjected to selective laser sintering and co-firing in the infrared conveyor furnace was investigated using the scanning electron microscope with the energy dispersive X-ray (EDS) spectrometer for a microchemical analysis and with the confocal laser scanning microscope. Both, the surface topography and cross section of the front contacts was examined with the SEM microscope. The phase composition analyses of the selected front contacts were carried out using the XRD method. The front contacts were formed on the surface with the different morphologies of solar cells: textured ones with a coated antireflection layer, textured ones without a coated antireflection layer, non-textured ones with a coated antireflection layer and non-textured ones without a coated antireflection layer. An average size of pyramids was measured using the atomic force microscope (AFM). The resistance of the front electrodes was investigated using the Transmission Line Model (TLM). Findings: The following technological recommendations for the laser micro-treatment technology such as optimal paste composition, the power and scanning speed of the laser beam, the morphology of the silicon substrate to produce the front electrode of silicon solar cells, were selected experimentally in order to produce a uniformly melted structure, well adhering to the substrate, with the low resistance of the front electrode-to-substrate joint zone. Research limitations/implications: The contact resistance of front metallisation established depends on the paste composition, morphology of the silicon substrate as well as the co-firing and laser micro-treatment conditions. Originality/value: This paper investigates the front contact production using different silver paste compositions on silicon solar cells in order to decrease contact resistance and increase efficiency in this way.
Rocznik
Strony
115--144
Opis fizyczny
Bibliogr. 80 poz., rys., tab
Twórcy
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] M.A. Green, Technology and System Applications: Solar cells. Operating Principles, The University of New South Wales, Kensington, 1986.
  • [2] M.A. Green, A.W. Blakers, S.R. Wenham, S. Narayanan, M.R. Willison, M. Taouk, T. Szpitalak, Improvements in silicon solar cell efficiency, Proceedings of the 19th IEEE Photovoltaic Specialists Conference, Las Vegas, 1985, 39-42.
  • [3] M.A. Green, A.W. Blakers, S. Narayanan, M. Taouk, Improvements in silicon solar cell efficiency, Solar Cells 17 (1986) 75-83.
  • [4] M.A. Green, J. Zhao, A. Wang, S.R. Wenham, Progress and outlook for high-efficiency crystalline silicon solar cells, Solar Energy Materials and Solar Cells 65 (2001) 9-16.
  • [5] M.A. Green, Third generation photovoltaic: solar cells for 2020 and beyond, Physic E 14 (2002) 65-70.
  • [6] G.A. Landis, Optimization of Tapered Busses for Solar Cell Contacts, Solar Energy 22 (1979) 401-402.
  • [7] R.S. Scharlack, The Optimal Design of Solar Cell Grid Lines, Solar Energy 23 (1979) 199-201.
  • [8] H.B. Serreze, Optimizing Solar Cell Performance by Simultaneous Consideration of Grid Pattern Design and Interconnect Configurations, Proceedings of the 13th IEEE Photovoltaic Specialists Conference, PVSEC, Washington, D.C., 1978, 609-614.
  • [9] R. Hezel, High-efficiency OECO Czochralski-silicon solar cells for mass production, Solar Energy Materials and Solar Cells 74 (2002) 25-33.
  • [10] S.O. Kasap, Optoelectronics and photonics: principles and practices, Prentice Hall, Upper Saddle River, Englewood Cliffs, NJ, 2001.
  • [11] E.J. Lee, D.S. Kim, S.H. Lee, Ni/Cu metallization for low-cost high efficiency PERC cells, Solar Energy Materials and Solar Cells 74 (2002) 65-70.
  • [12] N. Mason, O. Schultz, R. Russell, S. Glunz, W. Warta, 20.1% efficient large area cell on 140 micron thin silicon wafer, Proceedings of the 21st European Photovoltaic Solar Energy Conference, EU PVSEC’06, Dresden, Germany, 2006.
  • [13] N.B. Mason, T.M. Bruton, S. Glledhill, K.C. Heasman, O. Hartley, C. Morilla, S. Roberts, The selection and performance of monocrystalline silicon substrates for commercially viable 20% efficient lid-free solar cells, Proceedings of the 29th European Photovoltaic Solar Energy Conference, EU PVSEC’04, Paris, France, 2004.
  • [14] N.B. Mason, D. Jordan, High efficiency silicon solar cell production technology, Proceedings of the 10th European Photovoltaic Solar Energy Conference, EU PVSEC’91, Lisbon, Portugal, 1991, 280-283.
  • [15] J. Adamczewska, Technological processes in semiconductor engineering, WNT, Warsaw, 1980 (in Polish).
  • [16] Z.M. Jarzębski, Solar energy, Photoelectrical conversion, PWN , Warsaw, 1990 (in Polish).
  • [17] F. Kowtoniuk, J.A. Koncewoj, Measurement of semiconductor material parameters, PWN, Warsaw, 1973 (in Polish).
  • [18] P. Panek, M. Lipiński, E. Bełtowska-Lehman, K. Drabczyk, R. Ciach, Industrial technology of monocrystalline silicon solar cells, Opto-Electronics Review 11 (2003) 269-275.
  • [19] P. Panek, Modeling the structure of porous silicon in aspect electrical and optical properties solar cell, PhD dissertation, Institute Library of Metallurgy and Material Science of Polish Academy of Sciences, 2006 (in Polish).
  • [20] B. Lim, S. Hermann, K. Bothe, J. Schmidt, R. Brendel, Solar cells on low-resistivity boron-doped Czochralski-grown silicon with stabilised efficiencies of 20%, Applied Physics Letters 93/16 (2008) 960-968.
  • [21] S.S. Cohen, Contact resistance and methods for its determination, Thin Solid Films 104 (1983) 361-379.
  • [22] M.W. Denhoff, N. Droleta, The effect of the front contact sheet resistance on solar cell performance, Solar Energy Materials and Solar Cells 93/9 (2009) 1499-1506.
  • [23] K. Rajkanan, J. Shewchun, A better approach to the evolution of the series resistance of solar cells, Solid State Electronics 22 (1979) 193-197.
  • [24] D.K. Schroder, D.L. Meier, Solar cell contact resistance - a review, IEEE Transactions on Electron Devices 31/5 (1984) 637-646.
  • [25] A.D. Dobrzańska-Danikiewicz, A. Drygała, Strategic development perspectives of laser processing on polycrystalline silicon surface, Archives of Materials Science and Engineering 50/1 (2011) 5-20.
  • [26] P. Zięba, P. Panek, K. Drabczyk, M. Lipiński, Training materials. Dissemination achievements of polish and world photovoltaic in education process on higher level, Photovoltaic Laboratory of Institute of Metallurgy and Materiał Science, Polish Academy of Sciences, Cracow, 2009.
  • [27] W. Kuźmicz, Systems and electronic systems, WNT, Warsaw, 1985 (in Polish).
  • [28] A. Swit, J. Pułtorak, Semiconductor devices, WNT, Warsaw, 1979 (in Polish).
  • [29] P.P. Altermatt, A.G. Aberle, J. Zhao, A. Wang, G. Heiser, A numerical model of p-n junctions bordering on surfaces, Solar Energy and Solar Cells 74 (2002) 165-174.
  • [30] H.J. Booth, Recent application of pulsed lasers in advanced material processing, Thin Solid Films 453-454 (2004) 450-457.
  • [31] T.M. Bruton, Current status: production of efficiency monocrystalline silicon solar cells, Renewable Energy 6/3 (1995) 299-302.
  • [32] M. Castro, I. Antón, G. Sala, Pilot production of concentrator silicon solar cells: Approaching industrialization, Solar Energy Materials and Solar Cells 92 (2008) 1697-1705.
  • [33] F. Delahaye, M. Lohrmann, M. Bauer, Edge isolation: Innovative inline wet processing ready for industrial production, Proceedings of the 19th IEEE Photovoltaic Solar Energy Conference, PVSC’04, Paris, France, 2004, 416-418.
  • [34] M.W. Denhoff, N. Droleta, The effect of the front contact sheet resistance on solar cell performance, Solar Energy Materials and Solar Cells 93/9 (2009) 1499-1506.
  • [35] L.A. Dobrzański, A. Drygała, K. Gołombek, P. Panek, E. Bielańska, P. Zięba, Laser surface treatment of multi-crystalline silicon for enhancing optical properties, Journal of Materials Processing Technology 201 (2008) 291-296.
  • [36] L.A. Dobrzański, A. Drygała, Materials for solar cells -state of the art and perspectives, Proceedings of the 12th International Scientific Conference “Achievements in Mechanical and Materials Engineering” AMME'2003, Gliwice - Zakopane, 2003, 311-316.
  • [37] L.A. Dobrzański, A. Drygała, P. Panek, M. Lipiński, P. Zięba, Development of the laser method of multi-crystalline silicon surface texturization, Archives of Materials Science and Engineering 38/1 (2009) 5-11.
  • [38] F. Duericks, J. Szlufcik, Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride, Solar Energy Materials and Solar Cells 72/1-4 (2002) 231-246.
  • [39] R. Ebert, P. Regnefuss, L. Hartwig, S. Klotzer, H. Exner, Process Assembly for ^m-scale SLS, Reaction Sintering, and CVD, Proceedings of the 4th International Symposium “Laser Precision Micro-fabrication”, Munich, 2003, 183-188.
  • [40] T. Rodacki, A. Kandyba, Processing of energy in solar power station, WPS, Gliwice, 2000 (in Polish).
  • [41] E. Klugmann-Radziemska, Photovoltaic in theory and practice, BTC, Legionowo, 2010 (in Polish).
  • [42] M. Aleman, A. Streek, P. RegenfuP, A. Mette, R. Ebert, H. Exner, S.W. Glunz, G. Willeke, Laser micro-sintering as a new metallization technique for silicon solar cells, Proceedings of the 21st European Photovoltaic Solar Energy Conference, EU PVSEC’06, Dresden, Germany, 2006, 705.
  • [43] F. Dross, K.E. Van, C. Allebe, A. Van der Heide, J. Szlufcik, G. Agostinelli, P. Choulat, H.F.W. Dekkers, G. Beaucarne, Impact of Rear-Surface Passivation on MWT Performances, Proceedings of the 4th IEEE Photovoltaic Energy Conversion World Conference, 2006, 1291-1294.
  • [44] L. Gautero, M. Hofmann, J. Rentsch, A. Lemke, S. Mack, J. Seiffe, J. Nekarda, D. Biro, A. Wolf, B. Bitnar, J.M. Sallese, R. Preu, All-screen-printed 120-μm-thin large-area silicon solar cells applying dielectric rear passivation and laser-fired contacts reaching 18% efficiency, Proceedings of the 34th IEEE Photovoltaic Specialists Conference, PVSC, 2009, 1888-1893.
  • [45] S.B. Ghozati, A.U. Ebong, C.B. Honsberg, S.R. Wenham, Improved fill-factor for the double-sided buried-contact bifacial silicon solar cells, Solar Energy Materials and Solar Cells 51 (1998) 121-128.
  • [46] S.W. Glunz, J. Dicker, M. Esterle, M. Hermle, J. Isenberg, F. Kamerewerd, J. Knobloch, G. Willeke, High-efficiency silicon solar cells for low-illumination applications, Proceedings of the 29th IEEE Photovoltaic Specialists Conference, PVSC, New Orleans, 2002, 450-453.
  • [47] S.W. Glunz, J. Knobloch, C. Hebling, W. Wettling, The range of high-efficiency silicon solar cells fabricated at Fraunhofer Institut fur Solare Energisysteme, Proceedings of the 25th IEEE Photovoltaic Specialists Conference, PVSC, 1997, 231.
  • [48] S.W. Glunz, J. Necarda, H. Mäckel, A. Cuevas, Analyzing back contacts of silicon solar cells by suns-voc-measurements at high illumination densities, Proceedings of the 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan, 2007.
  • [49] S.W. Glunz, High-efficiency Crystalline Silicon Solar cells, Advances in Opto-Electrinics (2007) 1-15.
  • [50] P. Engelhart, N.P. Harder, T. Horstmann, R. Grischke, M. Rudiger, R. Brendel, Laser ablation of passivating SiNX layers for locally contacting emitters of high-efficiency solar cells, Proceedings of the 4th IEEE Photovoltaic Energy Conversion World Conference, 2006, 1024-1027.
  • [51] N.P. Harder, S. Hermann, A. Merkle, T. Neubert, T. Brendemuhl, P. Engelhart, R. Meyer, R. Brendel, Laser-processed high-efficiency silicon RISE-EWT solar cells and characterization, Physica Status Solidi C 6/3 (2009) 736-743.
  • [52] S. Hermann, P. Engelhart, A. Merkle, T. Nuebert, T. Brendemuhl, R. Meyer, N.P. Harder, R. Brendel, 21.4% -Efficient Emitter Wrap-Through RISE Solar Cells on a large area and picosecond laser processing of local contact openings, Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 2007, 970-973.
  • [53] H. Haverkamp, H. Knauss, E. Rueland, P. Fath, W. Joose, M. Klenk, C. Marckmann, L. Weber, H. Nussbaumer, H. Burkhardt, Advancements in the development of back contact cell manufacturing process, Proceeding of the 19th European Photovoltaic Solar Energy Conference, EU PVSEC’04, Paris, France, 2004, 967-969.
  • [54] V.K. Kofron, Photovoltaic cell with junction-free essentially-linear connections to its contacts, Patent USA, No 4 153 907, 1979.
  • [55] D.H. Neuhaus, A. Münzer, Industrial silicon wafer solar cells, Advances in Opto-Electronics (2007) 1-15.
  • [56] A.R. Neuhaus, J.H. Bultman, A.C. Tip, W.C. Sinke, Metallization pattems for interconnection through holes, Solar Energy and Solar Cells 65 (2001) 347-353.
  • [57] L.A. Dobrzański, M. Musztyfaga, A. Drygała, P. Panek, K. Drabczyk, P. Zięba, Manufacturing photovoltaic solar cells using the screen printing method, Proceedings of the 1st National PV Conference, Krynica-Zdrój, 2009, 1-9 (CD-ROM).
  • [58] L.A. Dobrzański, M. Musztyfaga, A. Drygała, P. Panek, Investigation of the screen printed contacts of silicon solar cells from Transmissions Line Model, Journal of Achievements in Materials and Manufacturing Engineering 41 (2010) 57-65.
  • [59] L.A. Dobrzański, M. Musztyfaga, A. Drygała, Selective laser sintering method of manufacturing front electrode of silicon solar cell, Journal of Achievements in Materials and Manufacturing Engineering 42 (2010) 111-119.
  • [60] L.A. Dobrzański, M. Musztyfaga, A. Drygała, A comparative study of both selective laser sintered and screen printed front contacts on monocrystalline silicon solar cells, Proceedings of the 8th Ukrainian-Polish Conference for Young Researches “Mechanics and Informatics”, Ukraine, 2011, 168-170.
  • [61] L.A. Dobrzański, M. Musztyfaga, A. Drygała, Comparison of conventional and unconventional methods for the front side metallization of silicon solar cells, Proceedings of the 14th International Conference “Advances in Materials and Processing Technologies” AMPT 2011, 284.
  • [62] L.A. Dobrzański, Engineering materials and materials design. Fundamentals of materials science and physical metallurgy, WNT, Warsaw-Gliwice, 2006 (in Polish).
  • [63] J.P. Boyeaux, H. El. Omari, D. Sarti, A. Laugier, Towards an improvement of screen printed contacts in multicrystaline silicon solar cells, Proceedings of the 11th European Photovoltaic Solar Energy Conference and Exhibition, 1992, 1-4.
  • [64] M. Burgelman, Thin film solar cells by screen printing technology, Proceedings of the Workshop Micro-technology and Thermal Problems in Electronics, 1998, 129-135.
  • [65] F. Clement, M. Menkoe, R. Hoenig, J. Haunschild, D. Biro, R. Preu, D. Lahmer, J. Lossen, H.J. Krokoszinski, Pilot-line processing of screen-printed Cz-Si MWT solar cells exceeding 17% efficiency, Proceedings of the 34th IEEE Photovoltaic Specialists Conference, PVSC, 2009, 223-227.
  • [66] F. Clement, M. Menkoe, D. Erath, T. Kubera, R. Hoenig, W. Kwapil, W. Wolke, D. Biro, R. Preu, High throughput via-metallization technique for multi-crystalline metal wrap through (MWT) silicon solar cells exceeding 16% efficiency, Solar Energy Materials and Solar Cells 94/1 (2010) 51-56.
  • [67] F. Clement, M. Menkoe, T. Kubera, C. Harmel, R. Hoenig, W. Wolke, H. Wirth, D. Biro, R. Preu, Industrially feasible multi-crystalline metal wrap through (MWT) silicon solar cells exceeding 16% efficiency, Solar Energy Materials and Solar Cells 93/6-7 (2009) 1051-1055.
  • [68] K. Faika, M. Wagner, P. Fath, E. Bucher, Simplification of EWT (emitter wrap-through) solar cell fabrication using Al-P-co-diffusion, Proceedings of the 28th IEEE Photovoltaic Specialists Conference, PVSEC, 2000, 260-263.
  • [69] P. Hahne, E. Hirth, I.E. Reis, K. Schwichtenberg, W. Richtering, F.M. Horn, U. Eggenweiler, Progress in thick-film pad printing technique for solar cells, Solar Energy Materials and Solar Cells 65/1-4 (2001) 399-407.
  • [70] D.M. Huljic, S. Thhormann, R. Preu, R. Ludemann, G. Willeke, Pad printing front contacts for c-Si solar cells-a technological and economical evaluation, Proceedings of the 29th IEEE Photovoltaic Specialists Conference, PVSC, New Orleans, Louisiana, USA, 2002, 126-129.
  • [71] W. Jooss, H. Knauss, F. Huster, P. Fath, E. Bucher, R. Tolle, T.M. Bruton, Back contact buried contact solar cells with metallization wrap around electrode, Proceedings of the 28th IEEE Photovoltaic Specialists Conference, PVSEC, 2000, 176-178.
  • [72] P. Vitanov, E. Goranova, V. Stavbrov, P. Ivanov, P.K. Singh, Fabrication of buried contact silicon solar cells using porous silicon, Solar Energy Materials and Solar Cells 93 (2009) 297-300.
  • [73] S.R. Wenham, M.A. Green, Buried contact solar cells, Australian Patent 570309, March 1985.
  • [74] Z. Yuwen, L. Zhongming, M. Chundong, H. Shaogi, L. Zhiming, Y. Yuan, Ch. Zhiyun, Buried-contact high efficiency silicon solar cell with mechanical, Solar Energy Materials and Solar Cells 48/1-4 (1997) 167-172.
  • [75] A.U. Ebong, C. Honsberg, S.R. Wenham, M.A. Green, Mechanically grooved, double sided, buried contact silicon solar cells, Renewable Energy 11/3 (1997) 331-340.
  • [76] A.U. Ebong, D.S. Kim, S.H. Lee, Low cost double-sided buried contact silicon solar cells, Renewable Energy 11/3 (1997) 285-297.
  • [77] http://www.ios.krakow.pl
  • [78] M. Castro, I. Antón, G. Sala, Pilot production of concentrator silicon solar cells: Approaching industrialization, Solar Energy Materials and Solar Cells 92 (2008) 1697-1705.
  • [79] H. Exner, P. Regnefuss, L. Hartwig, S. Klotzer, R. Ebert, Selective laser sintering with a Novel Process, Proceedings of the 4th International Symposium “Laser Precision Micro-fabrication”, Munich, 2003, 145-151.
  • [80] L. Kukiełka, The basis of engineering investigations, PWN, Warsaw, 2002 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e04d24f5-6ab1-4d63-9b7d-7394b39e5435
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.