PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model predictive ship trajectory tracking system based on line of sight method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Maritime Autonomous Surface Ships (MASS) perfectly fit into the future vision of merchant fleet. MASS autonomous navigation system combines automatic trajectory tracking and supervisor safe trajectory generation subsystems. Automatic trajectory tracking method, using line-of-sight (LOS) reference course generation algorithm, is combined with model predictive control (MPC). Algorithm for MASS trajectory tracking, including cooperation with the dynamic system of safe trajectory generation is described. It allows for better ship control with steady state cross-track error limitation to the ship hull breadth and limited overshoot after turns. In real MASS ships path is defined as set of straight line segments, so transition between trajectory sections when passing waypoint is unavoidable. In the proposed control algorithm LOS trajectory reference course is mapped to the rotational speed reference value, which is dynamically constrained in MPC controller due to dynamically changing reference trajectory in real MASS system. Also maneuver path advance dependent on the path tangential angle difference, to ensure trajectory tracking for turns from 0 to 90 degrees, without overshoot is used. All results were obtained with the use of training ship in real–time conditions.
Rocznik
Strony
art. no. e145763
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
Bibliografia
  • [1] E. Kayacan, H. Ramon, and W. Saeys, “Robust trajectory tracking error model-based predictive control for unmanned ground vehicles,” IEEE/ASME Trans. Mechatron., vol. 21, no. 2, pp. 806–814, 2015.
  • [2] M. Kamel, M. Burri, and R. Siegwart, “Linear vs nonlinear mpc for trajectory tracking applied to rotary wing micro aerial vehicles,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 3463–3469, 2017.
  • [3] A. Ratajczak, “Trajectory reproduction and trajectory tracking problem for the nonholonomic systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, no. 1, pp. 63–70, 2016, doi: 10.1515/bpasts-2016-0008.
  • [4] T. Baca, D. Hert, G. Loianno, M. Saska, and V. Kumar, “Model predictive trajectory tracking and collision avoidance for reliable outdoor deployment of unmanned aerial vehicles,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 6753–6760.
  • [5] W. Kowalczyk and K. Kozłowski, “Trajectory tracking and collision avoidance for the formation of two-wheeled mobile robots,” Bull. Pol. Acad. Sci. Tech. Sci., pp. 915–924, 2019.
  • [6] V. Kumar and J. Jerome, “An adaptive particle swarm optimization algorithm for robust trajectory tracking of a class of under actuated system,” Arch. Electr. Eng., vol. 63, no. 3, 2014.
  • [7] T.P. Nascimento, C.E.T. Dórea, and L.M.G. Gonçalves, “Nonlinear model predictive control for trajectory tracking of nonholonomic mobile robots: A modified approach,” Int. J. Adv. Robot. Syst., vol. 15, no. 1, pp. 1–14, 2018.
  • [8] J. Zhang, S. Zhang, and R. Gao, “Discrete-time predictive trajectory tracking control for nonholonomic mobile robots with obstacle avoidance,” Int. J. Adv. Robot. Syst., vol. 16, no. 5, pp. 17–29, 2019.
  • [9] M. Seyr and S. Jakubek, “Mobile robot predictive trajectory tracking,” in ICINCO, 2005, pp. 112–119.
  • [10] G. Klancar and I. Skrjanc, “Predictive trajectory tracking control for mobile robots,” in 2006 12th International Power Electronics and Motion Control Conference. IEEE, 2006, pp. 373–378.
  • [11] T.I. Fossen, M. Breivik, and R. Skjetne, “Line-of-sight path following of underactuated marine craft,” IFAC Proc. Vol., vol. 36, no. 21, pp. 211–216, 2003.
  • [12] N. Murali, M. Dineshkumar, K.W. Arun, and D. Sheela, “Guidance of parafoil using line of sight and optimal control,” IFAC Proc. Vol., vol. 47, no. 1, pp. 870–877, 2014.
  • [13] W. Caharija, K.Y. Pettersen, J.T. Gravdahl, and E. Børhaug, “Integral los guidance for horizontal path following of underactuated autonomous underwater vehicles in the presence of vertical ocean currents,” in 2012 American Control Conference (ACC). IEEE, 2012, pp. 5427–5434.
  • [14] L. Wan, Y. Su, H. Zhang, B. Shi, and M.S. AbouOmar, “An improved integral light-of-sight guidance law for path following of unmanned surface vehicles,” Ocean Eng., vol. 205, p. 107302, 2020.
  • [15] B. Qiu, G. Wang, and Y. Fan, “Predictor los-based trajectory linearization control for path following of underactuated unmanned surface vehicle with input saturation,” Ocean Eng., vol. 214, p. 107874, 2020.
  • [16] J. Nie and X. Lin, “Improved adaptive integral line-of-sight guidance law and adaptive fuzzy path following control for underactuated msv,” ISA Trans., 2019.
  • [17] W. Naeem, “Model predictive control of an autonomous underwater vehicle,” in Proc. UKACC Conference on Control. Citeseer, 2002, pp. 19–23.
  • [18] S.-R. Oh and J. Sun, “Path following of underactuated marine surface vessels using line-of-sight based model predictive control,” Ocean Eng., vol. 37, no. 2-3, pp. 289–295, 2010.
  • [19] M. Li, T. Li, Q. Shan, and H. Xv, “Line-of-sight based predictive control for curve path following of underactuated vessels,” in 2018 Ninth International Conference on Intelligent Control and Information Processing (ICICIP). IEEE, 2018, pp. 122–127.
  • [20] A. Pavlov, H. Nordahl, and M. Breivik, “Mpc-based optimal path following for underactuated vessels,” IFAC Proc. Vol., vol. 42, no. 18, pp. 340–345, 2009.
  • [21] K. Dong, J. Luo, and D. Limon, “A novel stable and safe model predictive control framework for autonomous rendezvous and docking with a tumbling target,” Acta Astronaut., vol. 200, pp. 176–187, 2022, doi: 10.1016/j.actaastro.2022.08.012.
  • [22] L. Ravikumar, N.K. Philip, R. Padhi, and M.S. Bhat, “Autonomous terminal maneuver of spacecrafts for rendezvous using model predictive control,” in 2016 Indian Control Conference (ICC), 2016, pp. 72–78, doi: 10.1109/INDIANCC.2016.7441108.
  • [23] S. Zhao, X. Wang, D. Zhang, and L. Shen, “Model predictive control based integral line-of-sight curved path following for unmanned aerial vehicle,” in AIAA Guidance, Navigation, and Control Conference, 2017, p. 1511.
  • [24] A. Weiss, I. Kolmanovsky, M. Baldwin, and R.S. Erwin, “Model predictive control of three dimensional spacecraft relative motion,” in 2012 American Control Conference (ACC). IEEE, 2012, pp. 173–178.
  • [25] B. Ma, K. Zhan, Z. Yu, and F. He, “Path tracking control of uuv based on los-mpc decoupling control,” in Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021), M. Wu, Y. Niu, M. Gu, and J. Cheng, Eds. Singapore: Springer Singapore, 2022, pp. 769–780.
  • [26] Z. Qian, W. Lyu, Y. Dai, and J. Xu, “A consensus-based model predictive control with optimized line-of-sight guidance for formation trajectory tracking of autonomous underwater vehicles,” J. Intel. Robot. Syst., vol. 106, no. 1, pp. 1–13, 2022.
  • [27] Z. Du, R.R. Negenborn, and V. Reppa, “Colregs-compliant collision avoidance for physically coupled multi-vessel systems with distributed mpc,” Ocean Eng., vol. 260, p. 111917, 2022, doi: 10.1016/j.oceaneng.2022.111917.
  • [28] C. Liu, J. Sun, and Z. Zou, “Integrated Line of Sight and Model Predictive Control for Path Following and Roll Motion Control Using Rudder,” J. Ship Res., vol. 59, no. 02, pp. 99–112, 06 2015, doi: 10.5957/jsr.2015.59.2.99.
  • [29] Z. Tian, H. Zheng, and W. Xu, “Path following of autonomous surface vehicles with line-of-sight and nonlinear model predictive control,” in 2021 6th International Conference on Transportation Information and Safety (ICTIS), 2021, pp. 1269–1274, doi: 10.1109/ICTIS54573.2021.9798580.
  • [30] W. Gierusz and A. Miller, “Ship motion control system for replenishment operation,” Appl. Mech. Mater., vol. 817, pp. 214–222, 2015.
  • [31] W. Gierusz, “Simulation model of the lng carrier with podded propulsion part 1: Forces generated by pods,” Ocean Eng., vol. 108, pp. 105–114, 2015.
  • [32] W. Gierusz, “Simulation model of the lng carrier with podded propulsion, part ii: Full model and experimental results,” Ocean Eng., vol. 123, pp. 28–44, 2016.
  • [33] M. Rybczak and A. Rak, “Prototyping and simulation environment of ship motion control system,” 2019, poster form TransNav 2019 Poster Session, article waiting for publication in TransNav Journal.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e04c967a-214c-46d4-bb73-bbea9a21ca88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.