PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Impact of Land Use in Adjacent Areas Causing Damage to Dirt Roads Using GIS Tools - Case Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ użytkowania terenów przyległych na erozję dróg gruntowych – analiza przypadku
Języki publikacji
EN
Abstrakty
EN
Surface run-off from areas adjacent to dirt roads may cause considerable damage to these roads. The degree of damage is determined from the amount of flowing water, run-off intensity as well as sites, in which run-off reaches the roads. These parameters result from soil conditions, as well as natural relief and the land form modified by tillage operations. Another parameter influencing the formation and the degree of erosion is connected with maintenance operations regularly repeated in the life cycle of these roads, such as e.g. surface levelling or use of paving materials. The analysis involved GIS tools, which made it possible to consider the impact of spatial variability in the surroundings of such roads on the incidence of adverse factors. The application of LiDAR data made it possible to indicate the formation of surface run-off routes and the resulting threats of damage to dirt roads.
PL
Spływy powierzchniowe z terenów przyległych do dróg gruntowych mogą wywoływać znaczne uszkodzenia tych dróg. Stopień uszkodzeń wynika z ilości spływającej wody, intensywności spływu oraz miejsc, w których spływy docierają do dróg. Parametry te wynikają z warunków glebowych oraz naturalnego i wynikającego ze stosowanych zabiegów uprawowych ukształtowania powierzchni terenu. Kolejnym parametrem wpływającym na powstawanie i stopień erozji są cykliczne zabiegi konserwacyjne stosowane w procesie utrzymania tych dróg, jak np. wyrównywanie powierzchni czy stosowanie materiałów utwardzających. W analizie zagadnienia zastosowano narzędzia GIS pozwalające na uwzględnienie wpływu przestrzennej zmienności otoczenia takich dróg na występowanie czynników szkodliwych. Wykorzystanie danych LIDAR pozwoliło na wskazanie ścieżek formowania się spływów powierzchniowych i wynikających z nich zagrożeń uszkodzeniami dróg gruntowych.
Rocznik
Strony
281--293
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
  • Poznań University of Life Sciences, Poland
  • Poznań University of Life Sciences, Poland
Bibliografia
  • Arnáez, J., Larrea, V., Ortigosa, L. (2004). Surface runoff and soil erosion on unpaved forest roads from rainfall simulation tests in northeastern Spain. CATENA, 57, 1-14. DOI: 10.1016/j.catena.2003.09.002
  • Arnáez, J., Ruiz-Flaño, P., Lasanta, T., Ortigosa, L., Llorente, J.A., Pascual, N., Lana- Renault, N. (2012). Effects of wheel traffic on runoff and soil erosion in slopes cultivated with vineyards. Cuadernos de Investigación Geográfica, 38, 115-130. DOI:10.18172/cig.1278
  • Bakker, M.M., Govers, G., van Doorn, A., Quetier, F., Chouvardas, D., Rounsevell, M. (2008). The response of soil erosion and sediment export to land-use change in four areas of Europe: The importance of landscape pattern. Geomorphology, Human and climatic impacts on fluvial and hillslope morphology, 98, 213-226. DOI: 10.1016/j.geomorph.2006.12.027
  • Benda, L., James, C., Miller, D., Andras, K., (2019). “Road Erosion and Delivery Index (READI): A Model for Evaluating Unpaved Road Erosion and Stream Sediment Delivery. J. Am. Water Resour. Assoc., 55, 459-484. DOI: 10.1111/1752-1688.12729.
  • Beven, K.J. & Kirkby, M.J. (1979). A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. Bull., 24, 43-69. DOI: 10.1080/ 02626667909491834
  • Beven, K.J., Kirkby, M.J., Schofield, N., Tagg, A.F. (1984). Testing a physically-based flood forecasting model (TOPMODEL) for three U.K. catchments. J. Hydrol. 69, 119-143. DOI: 10.1016/0022-1694(84)90159-8
  • Buchanan, B.P., Fleming, M., Schneider, R.L., Richards, B.K., Archibald, J., Qiu, Z., Walter, M.T. (2014). Evaluating topographic wetness indices across central New York agricultural landscapes. Hydrol. Earth Syst. Sci., 18, 3279-3299. DOI: 10.5194/hess-18-3279-2014
  • Chachaj, J. (1996). Detailed geological map of Poland in scale 1:50.000. Sheet 507-Mosina. Polish Geological Institute National Research Institute.
  • Chachaj, J. & Dobosz, B. (2007). Lithogenetic Map of Poland. Sheet 507-Mosina. Ministry of Environment.
  • Chu, X., Zhang, J., Chi, Y., Yang, J. (2010). An Improved Method for Watershed Delineationand Computation of Surface Depression Storage. Watershed Manag., Proceedings 1113-1122. DOI: 10.1061/41143(394)100
  • Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., Böhner, J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 8, 1991-2007. DOI: 10.5194/gmd-8-1991-2015.
  • Costa-Cabral, M.C. & Burges, S.J. (1994). Digital Elevation Model Networks (DEMON):A model of flow over hillslopes for computation of contributing and dispersal areas. Water Resour. Res., 30, 1681-1692. DOI: 10.1029/93WR03512
  • da Rocha Junior, P.R., Bhattarai, R., Alves Fernandes, R.B., Kalita, P.K., Vaz Andrade, F. (2016). Soil surface roughness under tillage practices and its consequences for water and sediment losses. J. Soil Sci. Plant Nutr., 16, 1065-1074. DOI: 10.4067/S0718-95162016005000078
  • De, N.V., Douglas, I., Mcmorrow, J., Lindley, S., Binh, D.K.N.T., Van, T.T., Thanh, L.H., Tho, N. (2008). Erosion and Nutrient Loss on Sloping Land under Intense Cultivation in Southern Vietnam. Geogr. Res. 46, 4-16. DOI: 10.1111/j.1745-5871.2007.00487.x
  • Gołąb, J. (2015). Water runoff from road surface in mountain forests. Ecol. Quest. 20, 63. DOI: 10.12775/EQ.2014.017
  • Hancock, G.R. (2005). The use of digital elevation models in the identification and characterization of catchments over different grid scales. Hydrol. Process. 19, 1727-1749. DOI: 10.1002/hyp.5632
  • Hjerdt, K.N., McDonnell, J.J., Seibert, J., Rodhe, A. (2004). A new topographic index to quantify downslope controls on local drainage: TECHNICAL NOTE. Water Resour. Res. 40. DOI: 10.1029/2004WR003130
  • Hornberger, G.M., Beven, K.J., Cosby, B.J., Sappington, D.E. (1985). Shenandoah Watershed Study: Calibration of a Topography-Based, Variable Contributing Area Hydrological Model to a Small Forested Catchment. Water Resour. Res. 21, 1841-1850. DOI: 10.1029/WR021i012p01841
  • Jones, J.A., Swanson, F.J., Wemple, B.C., Snyder, K.U. (2000). Effects of Roads on Hydrology, Geomorphology, and Disturbance Patches in Stream Networks. Conserv. Biol. 14, 7685. DOI: 10.1046/j.1523-1739.2000.99083.x
  • Laflen, J.M., Flanagan, D.C. (2013). The development of U. S. soil erosion prediction and modeling. Int. Soil Water Conserv. Res. 1, 1-11. DOI: 10.1016/S2095- 6339(15)30034-4
  • Minet, J., Laloy, E., Lambot, S., Vanclooster, M. (2010). Effect of GPR-derived withinfield soil moisture variability on the runoff response using a distributed hydrologic model. Hydrol. Earth Syst. Sci. Discuss., 7, 8947-8986. DOI: 10.5194/hessd-7- 8947-2010
  • Mohamedou, C., Korhonen, L., Eerikäinen, K., Tokola, T. (2019). Using LiDAR-modified topographic wetness index, terrain attributes with leaf area index to improve a single-tree growth model in south-eastern Finland. For. Int. J. For. Res. 92, 253- 263. DOI: 10.1093/forestry/cpz010
  • Montgomery, D.R. (2007). Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci., 104, 13268-13272. DOI: 10.1073/pnas.0611508104
  • Morvan, X., Naisse, C., Issa, O.M., Desprats, J.F., Combaud, A., Cerdan, O. (2014). Effect of ground-cover type on surface runoff and subsequent soil erosion in Champagne vineyards in France. Soil Use and Management, 30, 372-381. DOI: 10.1111/sum.12129
  • Ngezahayo, E., Ghataora, G.S., Burrow, M.P.N. (2019). Factors Affecting Erosion in Unpaved Roads. Proceedings of the 4th World Congress on Civil, Structural, and Environmental Engineering (CSEE’19), Paper No. ICGRE 108. DOI: 10.11159/icgre19.108
  • O'Callaghan, J.F. & Mark, D.M. (1984). The extraction of drainage networks from digital elevation data. Comput Vis Graph Image Process., 28, 323-344 DOI: 10.1016/S0734-189X(84)80011-0
  • Quinn, P.F., Beven, K.J., Lamb, R. (1995). The in(a/tan/β) index: How to calculate it and how to use it within the topmodel framework. Hydrol. Process., 9, 161-182. DOI: 10.1002/hyp.3360090204
  • Radecki-Pawlik, A., Wojkowski, J., Wałęga, A., Pijanowski, J. (2016). On using the GIS methods for analysing cultural landscapes of land water resources: the Mściwojów water reservoir region. Acta Sci. Pol. Form. Circumiectus, 14, 109-133. DOI: 10.15576/ASP.FC/2015.14.4.109
  • Raduła, M.W., Szymura, T.H., Szymura, M. (2018). Topographic wetness index explains soil moisture better than bioindication with Ellenberg’s indicator values. Ecological Indicators, 85, 172-179. DOI: 10.1016/j.ecolind.2017.10.011
  • Sørensen, R., Zinko, U., Seibert, J. (2006). On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci., 10, 101-112. DOI: 10.5194/hess-10-101-2006
  • Takken, I., Govers, G., Jetten, V., Nachtergaele, J., Steegen, A., Poesen, J. (2001). Effects of tillage on runoff and erosion patterns. Soil and Tillage Research, 61, 55-60. DOI: 10.1016/S0167-1987(01)00178-7
  • Thomas, I.A., Jordan, P., Mellander, P.-E., Fenton, O., Shine, O., ÓhUallacháin, D., Creamer, R., McDonald, N.T., Dunlop, P., Murphy, P.N.C. (2016). Improving the identification of hydrologically sensitive areas using LiDAR DEMs for the delineation and mitigation of critical source areas of diffuse pollution. Sci. Total Environ., 556, 276-290. DOI: 10.1016/j.scitotenv.2016.02.183
  • Varol, T., Ertuğrul, M., Özel, H.B., Emir, T., Çetin, M. (2019). The effects of rill erosion on unpaved forest road. Appl. Ecol. Env. Res., 17, 825-839. DOI: 10.15666/aeer/1701_825839
  • Vaze, J., Teng, J., Spencer, G. (2010). Impact of DEM accuracy and resolution on topographic indices. Environ. Model. Softw., 25, 1086-1098. DOI: 10.1016/j.envsoft. 2010.03.014
  • Yang, B., Wang, W.L., Guo, M.M., Guo, W.X., Wang, W.X., Kang, H.L., Zhao, M., Chen, Z.X. (2019). Soil erosion of unpaved loess roads subjected to an extreme rainstorm event: a case study of the Jiuyuangou watershed on the Loess Plateau, China. J. Mt. Sci., 16, 1396-1407. DOI: 10.1007/s11629-018-5211-z
  • Zemke, J.J., Enderling, M., Klein, A., Skubski, M. (2019). The Influence of Soil Compaction on Runoff Formation. A Case Study Focusing on Skid Trails at Forested Andosol Sites. Geosciences, 9, 204. DOI: 10.3390/geosciences9050204
  • Zhang, Y., Zhao, Y., Liu, B., Wang, Z., Zhang, S. (2019). Rill and gully erosion on unpaved roads under heavy rainfall in agricultural watersheds on China’s Loess Plateau. Agric. Ecosyst. Environ., 284, 106580. DOI: 10.1016/j.agee.2019.106580
  • Zhou, G., Wei, H., Fu, S. (2019). A fast and simple algorithm for calculating flow accumulation matrices from raster digital elevation. Front. Earth Sci., 13, 317-326. DOI: 10.1007/s11707-018-0725-9
  • Zumr, D., Dostál, T., Devátý J. (2015). Identification of prevailing storm runoff generation mechanismsin an intensively cultivated catchment. J. Hydrol. Hydromech., 63, 246-254. DOI: 10.1515/johh-2015-0022
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e044757e-73e4-47bd-b0d4-daa0f06bb584
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.