PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Behavioural Model of Graphene Field-effect Transistor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The behavioural model of a graphene field-effect transistor (GFET) is proposed. In this approach the GFET element is treated as a “black box” with only external terminals available and without considering the physical phenomena directly. The presented circuit model was constructed to reflect steady-state characteristics taking also into account GFET capacitances. The authors’ model is defined by a relatively small number of equations which are not nested and all the parameters can be easily extracted. It was demonstrated that the proposed model allows to simulate the steady-state characteristics with the accuracy approximately as high as in the case of the physical model. The presented compact GFET model can be used for circuit or system-level simulations in the future.
Rocznik
Strony
753--758
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • Gdańsk University of Technology, Faculty of Electrical and Control Engineering, Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Electrical and Control Engineering, Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Electrical and Control Engineering, Gdańsk, Poland
Bibliografia
  • [1] F. Schwierz, ”Graphene transistors”, Nat. Nanotechnol. 5, 487-496 (2010).
  • [2] P. Li, R. Z. Zeng, Y. B. Liao, Q. W. Zhang, and J. H. Zhou, ”A novel graphene metal semi-insulator semiconductor transistor and its new super-low power mechanism”, Sci. Rep. 9, 3642–3447 (2019).
  • [3] K. A. Kam, B. I. C. Tengan, C. K. Hayashi, R. C. Ordonez, and D. G. Garmire, ”Polar organic gate dielectrics for graphene field-effect transistor-based sensor technology”, Sensors 18, 2774–2784 (2018).
  • [4] L. J. A. Macedo, R. M. Iost, A. Hassan, K. Balasubramanian, and F. N. Crespilho, ”Bioelectronics and interfaces using monolayer graphene”, ChemElectroChem 6, 31–59 (2019).
  • [5] R. A. Picca, D. Blasi, E. Macchia, K. Manoli, C. Di Franco, G. Scamarcio, F. Torricelli, A. Zurutuza, I. Napal, A. Centeno, and L. Torsi, ”A label-free immunosensor based on a graphene water-gated field-effect transistor”, in Proc. IEEE 8th International Workshop on Advances in Sensors and Interfaces, Otranto, Italy, 2019, pp. 136–138.
  • [6] E. Macchia, A. Tiwari, K. Manoli, B. Holzer, N. Ditaranto, R. A. Picca, N. Cioffi, C. Di Franco, G. Scamarcio, G. Palazzo, and L. Torsi, ”Label-free and selective single-molecule bioelectronic sensing with a millimeter-wide self-assembled monolayer of anti-immunoglobulins”, Chem. Mater. 31, 6476–6483 (2019).
  • [7] Y. Qiao, X. Li, T. Hirtz, G. Deng, Y. Wei, M. Li, S. Ji, Q. Wu, J. Jian, F. Wu, Y. Shen, H. Tian, Y. Yang, and T.-L. Ren, ”Graphene-based wearable sensors”, Nanoscale 11, 18923–18945 (2019).
  • [8] H. Huang, S. Su, N. Wu, H. Wan, S. Wan, H. Bi, and L. Sun, ”Graphene-Based Sensors for Human Health Monitoring”, Front. Chem. 7, 399–425 (2019).
  • [9] M. Łuszczek, M. Turzyński, and D. Świsulski, ” Modelling of Graphene Field-Effect Transistor for electronic sensing applications”, Przegl. Elektrotechn. 10, 170–172 (2015).
  • [10] N. N. H. B. M. Norhakim and Z. A. B. Burhanudin, ”Correlation of charge neutrality point and ions capture in DNA-graphene field effect transistor using drift-diffusion model” in Proc. IEEE International Conference on Sensors and Nanotechnology, Penang, Malaysia, 2019, pp. 1-4.
  • [11] G. Seo, G. Lee, M.J. Kim, S.-H. Baek, M. Choi, K. B. Ku, C.-S. Lee, S. Jun, D. Park, H. G. Kim, S.-J. Kim, J.-O Lee, B. T. Kim, E. C. Park, and S. I. Ki, ”Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor based biosensor”, ACS Nano 14, 5135–5142 (2020).
  • [12] E. Pop and F. Lian, ”GFET Tool”, 2014, https://nanohub.org/resources/gfettool (DOI: 10.4231/D36M33379).
  • [13] N. Lu, L. Wang, L. Li, and M. Liu, ”A review for compact model of graphene field-effect transistors”, Chin. Phys. B 26, 036804–036818 (2017).
  • [14] D. Jimenez, ”Explicit drain current, charge and capacitance model of Graphene Field-Effect Transistors”, IEEE Trans. Electron Devices 58, 4377–4383 (2011).
  • [15] O. Habibpour, J. Vukusic, and J. Stake, ”A large signal graphene FET model”, IEEE Trans. Electron Devices 59, 968–975 (2012).
  • [16] K. N. Parrish, M. E. Ramon, S. K. Banerjee, and D. Akinwande, ”A compact model for Graphene FETs for linear and non-linear circuit”, in Proc. IEEE International Conference on Simulation of Semiconductor Processes and Devices, Denver, USA, 2012, pp. 75–78.
  • [17] S. Rodriguez, S. Vaziri, A. Smith, S. Fregonese, M. Ostling, M. C. Lemme, and A. Rusu, ”Static nonlinearity in Graphene Field Effect Transistors”, IEEE Trans. Electron Devices 61, 3001–3003 (2014).
  • [18] M. Turzyński and W. J. Kulesza, ”A simplified behavioural MOSFET model based on parameters extraction for circuit simulations”, IEEE Trans. Power Electron. 31, 3096–3105 (2016).
  • [19] S. Rodriguez, S. Vaziri, M. Ostling, A. Rusu, E. Alarcon, and M. C. Lemme, ”RF performance projections of graphene FETs vs. silicon MOSFETs”, ECS Solid State Lett. 1, Q39–Q41 (2012).
  • [20] N. Caka, M. Zabeli, M. Limani, and Q. Kabashi, ”Impact of MOSFET parameters on its parasitic capacitances”, in Proc. 6th WSEAS International Conference on Electronics, Hardware, Wireless and Optical Communications, Stevens Point, Wisconsin, USA, 2007, pp. 55–59.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e041814c-d031-4143-afd8-491fef960251
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.