PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of Ni2+ from aqueous solution by magnetic Fe@graphite nano-composite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The removal of Ni2+  from aqueous solution by iron nanoparticles encapsulated by graphitic layers (Fe@G) was investigated. Nanoparticles Fe@G were prepared by chemical vapor deposition CVD process using methane as a carbon source and nanocrystalline iron. The properties of Fe@G were characterized by X-ray Diffraction method (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform-Infrared Spectroscopy (FTIR), BET surface area and zeta potential measurements. The effects of initial Ni2+  concentration (1–20 mg L−1 ), pH (4–11) and temperature (20–60°C) on adsorption capacity were studied. The adsorption capacity at equilibrium increased from 2.96 to 8.78 mg g−1 , with the increase in the initial concentration of Ni2+  from 1 to 20 mg L−1  at pH 7.0 and 20°C. The experimental results indicated that the maximum Ni2+  removal could be attained at a solution pH of 8.2 and the adsorption capacity obtained was 9.33 mg g−1 . The experimental data fitted well with the Langmuir model with a monolayer adsorption capacity of 9.20 mg g−1 . The adsorption kinetics was found to follow pseudo-second-order kinetic model. Thermodynamics parameters, ΔHO, ΔGO and ΔSO, were calculated, indicating that the adsorption of Ni2+  onto Fe@G was spontaneous and endothermic in nature.
Rocznik
Strony
96--103
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
autor
  • Maritime University of Szczecin, Department of Integrated Transport Technology and Environmental Protection, Henryka Pobożnego St. 11, 70-507 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Pułaskiego St. 10, 70-322 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Pułaskiego St. 10, 70-322 Szczecin, Poland
Bibliografia
  • 1. Gupta, V.K., Srivastava, S.K., Mohan, D. & Sharma, S. (1998). Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Manage. 17(8), 517–522. DOI: 10.1016/S0956-053X(97)10062-9.
  • 2. Gupta, V.K., Agarwal, S. & Saleh, T.A. (2011). Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal, J. Hazard. Mater. 185(1), 17–23. DOI: 10.1016/j.jhazmat.2010.08.053.
  • 3. Gupta, V.K. & Nayak, A. (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem. Eng. J. 180, 81–90. DOI: 10.1016/j.cej.2011.11.006.
  • 4. Saleh, T.A. & Gupta, V.K. (2012). Column with CNT/magnesium oxide composite for lead(II) removal from water. Environ. Sci. Pollut. Res. 19(4), 1224–1228. DOI: 10.1007/s11356-011-0670-6.
  • 5. Gupta, V.K., Nayak, A. & Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res. 20(1), 001–018. DOI: 10.4491/eer.2015.018.
  • 6. Goswami, A., Raul, P.K. & Purkait, M.K. (2012). Arsenic adsorption using copper (II) oxide nanoparticles. Chem. Eng. Res. Des. 90, 1387–1396. DOI: 10.1016/j.cherd.2011.12.
  • 7. Khan, T., Isa, M.H., Mustafa, M.R.U., Yeek-Chia, H., Baloo, L., Manan, T.S.B.A. & Saeed, M.O. (2016). Cr(VI) adsorption from aqueous solution by an agricultural waste based carbon. RSC Adv. 6, 56365–56374. DOI: 10.1039/C6RA05618K.
  • 8. Giraldo, L., Erto, A. & Moreno-Piraján, J.C. (2013). Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization. Adsorption 19(2), 465–474. DOI: 10.1007/s10450-012-9468–1.
  • 9. Krishna, R.H. & Swamy, A. (2011). Kinetic and isotherm modeling of adsorption of Ni (II) form aqueous solutions onto powder of papaya seeds. Int. J. Sci. Res. Publ. 1(1), 1–6. ISSN 2250-3153.
  • 10. Sanciolo, P., Harding, I.H. & Mainwaring, D.E. (1992). The Removal of chromium, nickel, and zinc from electroplating wastewater by adsorbing colloid flotation with a sodium dodecylsulfate/dodecanoic acid mixture. Sep. Sci. Technol. 27, 375–388. DOI: 10.1080/01496399208018887.
  • 11. Murthy, Z.V.P. & Chaudhari, L.B. (2008). Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters. J. Hazard. Mater. 160, 70–77. DOI: 10.1016/j.jhazmat.2008.02.085.
  • 12. Siboni, M.S., Samadi, M.T., Yang, J.K. & Lee, S.M. (2012). Photocatalytic removal of Cr(VI) and Ni(II) by UV/TiO2: kinetic study. Desalin. Water Treat. 40, 77–83. DOI: 10.1080/19443994.2012.671144.
  • 13. Chen, X., Huang, G. & Wang, J. (2013). Electrochemical reduction/oxidation in the treatment of heavy metal wastewater. J. Metall. Eng. 2, 161–164.
  • 14. Dabrowski, A., Hubicki, Z., Podkościelny, P. & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemo-sphere 56, 91–106. DOI: 10.1016/j.chemosphere.2004.03.006.
  • 15. Molinari, R., Poerio, T. & Argurio, P. (2008). Selective separation of copper(II) and nickel(II) from aqueous media using the complexationeultrafiltration process. Chemosphere 70, 341–348. DOI: 10.1016/j.chemosphere.2007.07.041.
  • 16. Lakshtanov, L.Z. & Stipp, S.L.S. (2007). Experimental study of nickel(II) interaction with calcite: adsorption and coprecipitation. Geochim. Cosmochim. Acta 71, 3686–3697. http://dx.doi.org/10.1016/j.gca.2007.04.006.
  • 17. Al-Asheh, S., Banat, F. & Mobai, F. (1999). Sorption of copper and nickel by spent animal bones. Chemosphere 39(12), 2087–2096. DOI: 10.1016/S0045-6535(99)00098-3.
  • 18. Vijayaraghavan, K., Jegan, J., Palanivelu, K. & Velan, M. (2004). Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column. J. Hazard. Mater. B113, 223–230. DOI: 10.1016/j.jhazmat.2004.06.014.
  • 19. Vijayaraghavan, K., Jegan, J., Palanivelu, K. & Velan, M. (2005). Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Sep. Purif. Technol. 44, 53–59. DOI: 10.1016/j.seppur.2004.12.003.
  • 20. Panneerselvam, P., Morad, N. & Tan, K.A. (2011). Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution. J. Hazard. Mater. 186, 160–168. DOI: 10.1016/j.jhazmat.2010.10.102.
  • 21. Hasar, H. (2003). Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk. J. Hazard. Mater. 97, 49–57. DOI: 10.1016/s0304-3894(02)00237-6.
  • 22. Fiol, N., Villaescusa, I., Martinez, M., Miralles, N., Poch, J. & Serarols, J. (2006). Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 50, 132–140. DOI: 10.1016/j.seppur.2005.11.016.
  • 23. Rao, M., Parwate, A.V. & Bhole, A.G. (2002). Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Manage. 22, 821–830. DOI: 10.1016/S0956-053X(02)00011-9.
  • 24. Otun, J.A, Oke, I.A., Olarinoye, N.O., Adie, D.B. & Okuofu, C.A. (2006). Adsorption isotherms of Pb(II), Ni(II) and Cd(II) ions onto PES. J. Appl. Sci. 6(11), 2368–2376.
  • 25. Olayinka, O.K., Oyedeji, O.A. & Oyeyiola, O.A. (2009). Removal of chromium and nickel ions from aqueous solution by adsorption on modified coconut husk. Afr. J. Environ. Sci. Technol. 3(10), 286–293. DOI: 10.5897/AJEST09.053.
  • 26. Gao, Z., Bandosz, T.J., Zhao, Z., Han, M. & Qiu, J. (2009). Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J. Hazard. Mater. 167, 357–365. DOI: 10.1016/j.jhazmat.2009.01.050.
  • 27. Kandah, M.I. & Meunier, J.L. (2007). Removal of nickel ions from water by multi-walled carbon nanotubes. J. Hazard. Mater. 146(1-2), 283–288. DOI: 10.1016/j.jhazmat.2006.12.019.
  • 28. Yang, S., Li, J., Shao, D., Hu, J. & Wang, X. (2009). Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 166, 109–116. DOI: 10.1016/j.jhazmat.2008.11.003.
  • 29. Chen, C., Hu, J., Shao, D., Li, J. & Wang, X. (2009). Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J. Hazard. Mater. 164, 923–928. DOI: 10.1016/j.jhazmat.2008.08.089.
  • 30. Wu, S., Huang, J., Zhuo, C., Zhang, F., Sheng, W. & Zhu, M. (2016). One-Step Fabrication of Magnetic Carbon Nanocomposite as Adsorbent for Removal of Methylene Blue. J. Inorg. Organomet. Polym. Mater. 26(3), 632–639. DOI: 10.1007/s10904-016-0355–1.
  • 31. He, F., Fan, J., Ma, D., Zhang, L., Leung, C. & Chan, H.L. (2010). The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon 48(11), 3139–3144. DOI: 10.1016/j.carbon.2010.04.052.
  • 32. Hao, Y., Wang, Z., Gou, J. & Dong, S. (2015). Highly efficient adsorption and removal of Chrysoidine Y from aqueous solution by magnetic graphene oxide nanocomposite. Arabian J. Chem. http://dx.doi.org/10.1016/j.arabjc.2015.07.01.
  • 33. Qu, S., Huang, F., Yu, S., Chen, G. & Kong, J. (2008). Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J. Hazard. Mater. 160, 643–647. DOI: 10.1016/j.jhazmat.2008.03.037.
  • 34. Zhu, J., Guo, H.G.J., Chen, M., Wei, H., Luo, Z., Colorado, H.A., Yerra, N., Ding, D., Ho, T.C., Haldolaarachchige, N., Hopper, J., Young, D.P., Guo, Z. & Wei, S. (2014). Mesoporous magnetic carbon nanocomposite fabrics for highly efficient Cr(VI) removal. J. Mater. Chem. A 2, 2256–2265. DOI: 10.1039/C3TA13957C.
  • 35. Pełech, I. (2010). Preparation of carbon nanotubes using CVD method. Pol. J. Chem. Technol. 12(3), 45–49. DOI: 10.2478/v10026-010-0033-y.
  • 36. Sykuła-Zając, A., Turek, M., Mathew, M.P., Patai, F., Horvat, M. & Jabłońska, J. (2010). Determination of nickel in tea by using dimethylglyoxime method. Scientific Bulletin of the Technical University of Lodz. Food Chemistry and Biotechnology 74(1081), 5–11.
  • 37. Li, H., Zhao, N., He, C., Shi, C., Du, X. & Li, J. (2008). Low temperature fabrication of hollow carbon nanospheres over Ni/Al2O3 by the catalytic method. J. Alloys Comp. 465, 387–390. DOI: 10.1016/j.jallcom.2007.10.090.
  • 38. Canete-Rosales, P., Ortega, V., Álvarez-Lueje, A., Bollo, S., González, M., Ansón, A. & Martínez, M.T. (2012). Influence of size and oxidative treatments of multi-walled carbon nanotubes on their electrocatalytic properties. Electrochim. Acta 62, 163–171. DOI: 10.1016/j.electacta.2011.12.043.
  • 39. Kolacyak, D., Ihde, J., Merten, C., Hartwig, A. & Lommatzsch, U. (2011). Fast functionalization of multi-walled carbon nanotubes by an atmospheric pressure plasma jet. J. Coll. Inter. Sci. 359, 311–317. DOI: 10.1016/j.jcis.2011.03.069.
  • 40. Estévez-Martínez, Y., Velasco-Santos, C., Martínez-Hernández, A.L., Delgado, G., Cuevas-Yáñez, E., Alaníz-Lumbreras, D., Duron-Torres, S. & Castaño, V.M. (2013). Grafting of Multiwalled Carbon Nanotubes with Chicken Feather Keratin. J Nanomat. 2013, 1–9. DOI: 10.1155/2013/702157.
  • 41. Coates, J.P. (2000). A Practical Approach to the Interpretation of Infrared Spectra. Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd., Chichester.
  • 42. Chen, J., Chen, Q., Ma, Q., Li, Y. & Zhu, Z. (2012). Chemical treatment of CNTs in acidic KMnO4 solution and promoting effects on the corresponding Pd–Pt/CNTs catalyst. J. Mol. Catal. A: Chem. 356, 114–120. DOI: 10.1016/j.molcata.2011.12.032.
  • 43. Helminiak, A., Mijowska, E. & Arabczyk, W. (2013). Characterization of carbon deposit with controlled carburization degree. Mater. Sci. Pol. 31(1), 29–35. DOI: 10.2478/s13536-012-0063-7.
  • 44. Chairat, M., Rattanaphani, S., Bremner, J.B. & Rattanaphani, V. (2008). Adsorption kinetic study of lac dyeing on cotton. Dyes Pigm. 76, 435–439. DOI: 10.1016/j.dyepig.2006.09.008.
  • 45. Kumar, P.S. & Kirthika, K. (2009). Equilibrium and kinetic study of adsorption of nickel from aqueous solution onto bael tree leaf powder. J. Eng. Sci. Technol. 4(4), 351–363.
  • 46. Ai, L., Zhou, Y. & Jiang, J. (2011). Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination 266, 72–77. DOI: 10.1016/j.desal.2010.08.004.
  • 47. Kapoor, A. & Viraragavan, T. (1998). Heavy metal biosorption sites in Aspergillus Niger. Bioresour. Technol. 61, 221–227. DOI: 10.1016/S0960-8524(97)00055-2.
  • 48. Suemitsu, R., Uenishi, R., Akashi, I. & Kakano, M. (1986). The use of dyestuff-treated rice hulls for removal of heavy metals from wastewater. J. Appl. Polym. Sci. 31, 75–83. DOI: 10.1002/app.1986.070310108.
  • 49. Al-Rub, F.A.A., Kandah, M. & Aldabaibeh, N. (2002). Nickel removal from aqueous solution by using sheep Manure Waste. Eng. Life Sci. 2, 111–116. DOI: 10.1002/1618-2863(200204).
  • 50. Padmavathy, V. (2008). Biosorption of Ni(II) ions on Baker’s yeast: kinetic, thermodynamic and desorption studies. Bioresour. Technol. 99, 3100–3109. DOI: 10.1016/j.biortech.2007.05.070.
  • 51. Ho, Y.S., Jhonwase, D.A. & Forster, C.F. (1995). Batch nickel removal from aqueous solution by Sphagnum moss peat. Water Res. 29, 1327–1332. DOI: 10.1016/0043–1354(94)00236-3.
  • 52. Ewecharoen, A., Thiravetyan, P. & Nakbanpote, W. (2008). Comparison of nickel adsorption form electroplating rinse water by coir pith and modified coir pith. Chem. Eng. J. 137, 181–188. DOI: 10.1016/j.cej.2007.04.007.
  • 53. Huang, C., Ying-Chien, C. & Ming-Ren, L. (1996). Adsorption of Cu(II) and Ni(II) by palletized biopolimer. J. Hazard. Mater. 45, 265–267. DOI: 10.1016/0304-3894(95)00096-8.
  • 54. Sharma, Y.C. & Srivastava, V. (2010). Separation of Ni(II) ions from aqueous solutions by magnetic nanoparticles. J. Chem. Eng. Data 55, 1441–1442. DOI: 10.1021/je900619d.
  • 55. Meena, A.K., Mishra, G.K., Rai, P.K., Rajgopal, C. & Nagar, P.N. (2005). Removal of heavy metal ions from aqueous solution using carbon aerogel as an adsorbent. J. Hazard. Mater. 122, 161–170. DOI: 10.1016/j.jhazmat.2005.03.024.
  • 56. Johnson, C.D. & Worrall, F. (2007). Novel granular materials with microcrystalline active surfaces-waste water treatment applications of zeolite/vermiculite composites. Water Res. 41, 2229–2235. DOI: 10.1016/j.watres.2007.01.047.
  • 57. Kinhikar, V.R. (2012). Removal of Nickel (II) from Aqueous Solutions by Adsorption with Granular Activated Carbon (GAC). Res. J. Chem. Sci. 2(6), 6–11. ISSN 2231-606X.
  • 58. Yueming Ren, N.Y. (2011). Graphene/δ-MnO 2 composite as adsorbent for the removal of nickel ions from wastewater. Chem. Eng. J. 175, 1–7. DOI: 10.1016/j.cej.2010.08.010.
  • 59. Jha, V.K., Matsuda, M. & Miyake, M. (2008). Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni2+, Cu2+, Cd2+ and Pb2+. J. Hazard. Mater. 160, 148–153. DOI: 10.1016/j.jhazmat.2008.02.107.
  • 60. Thamilarasu, P., Sivakumar, P. & Karunakaran, K. (2011). Removal of Ni(II) from aqueous solutions by adsorption onto Cajanus cajan L Milsp seed shell activated carbons. Indian J. Chem. Technol. 18(5), 414–420.
  • 61. Zhang, X. & Wang, X. (2015). Adsorption and desorption of nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite. PLoS One 10, e0117077. DOI: 10.1371/journal.pone.0117077.
  • 62. Karagoz, S., Tay, T., Ucar, S. & Erdem, M. (2008). Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresour. Technol. 99, 6214–6222. DOI: 10.1016/j.biortech.2007.12.019.
  • 63. Kara, M., Yuzer, H., Sabah, E. & Celik, M.S. (2003). Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res. 37, 224–232. DOI: 10.1016/S0043–1354(02)00265-8.
  • 64. Jaycock, M.J. & Parfitt, G.D. (1981). Chemistry of Interfaces. Ellis Horwood Ltd., Onichester.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e03c4a57-0ec9-4d91-bbff-47db68f9a6fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.