PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensory processing related to vergence eye movements – an event-related potential study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vergence eye movements, movements executed in opposite directions, have a crucial role in depth perception and are necessary for maintaining proper binocular vision. Despite these facts, the neurophysiological studies of vergence eye movement on humans are rare and give ambiguous results. In the present study, the sensory event-related potentials (ERPs) related to the processing of stimuli called for convergence, divergence and saccade were explored. Sixteen healthy subjects (mean 23 years old) performed reflexive (visually-guided) eye movements and event-related potentials from 64 active electrodes were recorded. The significant preponderance of cortical activity for convergence among three conditions was revealed and it concerned both anterior (larger negativity) and posterior cortex (larger positivity). Here, we also reported the longest latency for convergence. These results may suggest larger cortical representation for stimuli presented in near visual space, thus the preponderance of near cells within cortex, which respond to cross retinal image disparity being a cue for convergence.
Słowa kluczowe
Czasopismo
Rocznik
Strony
463--475
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
  • Vision and Neuroscience Laboratory, NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
  • Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
  • Vision and Neuroscience Laboratory, NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
  • Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
  • Degree Course in Optics and Optometry, Department of Sciences, Roma TRE University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
autor
  • Degree Course in Optics and Optometry, Department of Sciences, Roma TRE University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
  • Ophthalmic Research Group, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom
  • Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
  • Vision and Neuroscience Laboratory, NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
Bibliografia
  • [1] LEIGH R.J., ZEE D.S., Neurology of Eye Movements, 4th Ed., Oxford University Press, New York, 2006.
  • [2] ALVAREZ T.L., ALKAN Y., GOHEL S., WARD B.D., BISWAL B.B., Functional anatomy of predictive vergence and saccade eye movements in humans: a functional MRI investigation, Vision Research 50(21), 2010, pp. 2163–2175.
  • [3] ALKAN Y., BISWAL B.B., TAYLOR P.A., ALVAREZ T.L., Segregation of frontoparietal and cerebellar components within saccade and vergence networks using hierarchical independent component analysis of fMRI, Visual Neuroscience 28(3), 2011, pp. 247–261.
  • [4] ALKAN Y., BISWAL B.B., ALVAREZ T.L., Differentiation between vergence and saccadic functional activity within the human frontal eye fields and midbrain revealed through fMRI, PLoS One 6(11), 2011, article ID e2586.
  • [5] HASEBE H., OYAMADA H., KINOMURA S., KAWASHIMA R., OUCHI Y., NOBEZAWA S., TSUKADA H., YOSHIKAWA E., UKAI K., TAKADA R., TAKAGI M., ABE H., FUKUDA H., BANDO T., Human cortical areas activated in relation to vergence eye movements–a PET study, NeuroImage 10(2), 1999, pp. 200–208.
  • [6] KAPOULA Z., EVDOKIMIDIS I., SMYRNIS N., BUCCI M.P., CONSTANTINIDIS T.S., EEG cortical potentials preceding vergence and combined saccade-vergence eye movements, Neuroreport 13(15), 2002, pp. 1893–1897.
  • [7] TZELEPI A., LUTZ A., KAPOULA Z., EEG activity related to preparation and suppression of eye movements in three-dimensional space, Experimental Brain Research 155(4), 2004, pp. 439–449.
  • [8] BERNDT I., FRANZ V.H., BÜLTHOFF H.H., WASCHER E., Effects of pointing direction and direction predictability on event-related lateralizations of the EEG, Human Movement Science 21(3), 2002, pp. 75–98.
  • [9] MORGAN M.W., Analysis of clinical data, American Journal of Optometry and Archives of American Academy of Optometry 21(12), 1944, pp. 477–491.
  • [10] OOSTENVELD R., PRAAMSTRA P., The five percent electrode system for high-resolution EEG and ERP measurements, Clinical Neurophysiology 112(4), 2001, pp. 713–719.
  • [11] DOIG H.R., BOYLAN C., Presaccadic spike potentials with large horizontal eye movements, Electroencephalography and Clinical Neurophysiology 73(3), 1989, pp. 260–263.
  • [12] NAWROT P., MICHALAK K.P., PRZEKORACKA-KRAWCZYK A., Does home-based vision therapy affect symptoms in young adults with convergence insufficiency?, Optica Applicata 43(3), 2013, pp. 551– 566.
  • [13] YANG Q., BUCCI M.P., KAPOULA Z., The latency of saccades, vergence and combined eye movements in children and in adults, Investigative Ophthalmology and Visual Science 43(9), 2002, pp. 2939–2349.
  • [14] SEMMLOW J., WETZEL P., Dynamic contributions of the components of binocular vergence, Journal of the Optical Society of America 69(5), 1979, pp. 639–645.
  • [15] HUNG G.K., ZHU H., CIUFFREDA K.J., Convergence and divergence exhibit different response characteristics to symmetric stimuli, Vision Research 37(9), 1977, pp. 1197–1205.
  • [16] WOJTCZAK-KWAŚNIEWSKA M., PRZEKORACKA-KRAWCZYK A., VAN DER LUBBE R.H.J., The engagement of cortical areas preceding exogenous vergence eye movements, PLoS ONE 13(6), 2018, article ID e0198405.
  • [17] POGGIO G.F., FISCHER B., Binocular integration and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey, Journal of Neurophysiology 40(6), 1977, pp. 1392–1405.
  • [18] PTITO M., LEPORE F., GUILLEMOT J.P., Loss of stereopsis following lesions of cortical areas 17–18 in the cat, Experimental Brain Research 89(3), 1992, pp. 521–530.
  • [19] ADAMS D.L., ZEKI S., Functional organization of macaque V3 for stereoscopic depth, Journal of Neurophysiology 86(5), 2001, pp. 2195–2203.
  • [20] FERRAINA S., PARÉ M., WURTZ R.H., Disparity sensitivity of frontal eye field neurons, Journal of Neurophysiology 83(1), 2000, pp. 625–629.
  • [21] BACON B.A., LEPORE F., GUILLEMOT J.P., Striate, extrastriate and collicular processing of spatial disparity cues, Archives of Physiology and Biochemistry 106(3), 1998, pp. 236–244.
  • [22] MANGUN G.R.R., HILLYARD S.A., The spatial allocation of visual attention as indexed by event-related brain potentials, Human Factors 29(2), 1987, pp. 195–211.
  • [23] VALDÉS-CONROY B., SEBASTIÁN M., HINOJOSA J.A., ROMÁN F.J., SANTANIELLO G., A close look into the near/far space division: a real-distance ERP study, Neuropsychologia 59, 2014, 27–34.
  • [24] SHULMAN G.L., POPE D.L.W., ASTAFIEV S.V., MCAVOY M.P., SNYDER A.Z., CORBETTA M., Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network, Journal of Neuroscience 30(10), 2010, pp. 3640–3651.
  • [25] MOSIDZE V.M., MKHEIDZE R.A., MAKASHVILI M.A., Disorders of visuo-spatial attention in patients with unilateral brain damage, Behavioural Brain Research 65(1), 1994, pp. 121–122.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0379f46-1d53-49f2-875a-3e8c442a3534
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.