PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of the Light Emitting Diode as a photoreceptor : spectral and electrical characterization as function of temperature and lighting source

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the temperature influence on the spectral responsivity of a Light Emitting Diode (LED) used as a photoreceptor, combined to light source spectrum is correlated to electrical characteristics in order to propose an alternative method to estimate LED junction temperature, regardless of the absolute illumination intensity and based on the direct correlation between the integral of the product of two optical spectra and the photo-generated currents. A laboratory test bench for experimental optical measurements has been set in order to enable any characterizing of photoelectric devices in terms of spectral behaviour, in a wavelength range placed between 400–1000 nm, and of current-voltage characteristics as function of temperature by using two different illumination sources. The temperature is analysed in a range from 5°C up to 85°C, so as to evaluate thermal variation effects on the sensor performance. The photo-generated current of two LEDs with different peak wavelengths has been studied. Research has observed and mathematically analysed what follows: since the photo-generated current strictly depends on the combination between the spectral response of the photoreceptor and the lighting source response, it becomes possible to estimate indirectly the junction temperature of the LEDs by considering the ratio between the photogenerated currents obtained by using two different illumination sources. Such results may for one thing increase knowledge in the fields where LEDs are used as photo-detectors for many applications and for another, they could be extended to generic photodetectors, thus providing useful information in photovoltaic field, for instance.
Twórcy
autor
  • Department of Information Engineering (DINFO), University of Florence, Via Santa Marta, 3, 50139, Florence, Italy
autor
  • Ultrasound and Non-Destructive Testing Lab, Department of Information Engineering (DINFO), University of Florence, via Santa Marta 3, 50139, Florence, Italy
autor
  • Department of Information Engineering (DINFO), University of Florence, Via Santa Marta, 3, 50139, Florence, Italy
autor
  • Department of Information Engineering (DINFO), University of Florence, Via Santa Marta, 3, 50139, Florence, Italy
autor
  • Power Pure Control s.r.l., Via Carbonia, 2, 56021, Navacchio, Pisa, Italy
autor
  • Department of Information Engineering (DINFO), University of Florence, Via Santa Marta, 3, 50139, Florence, Italy
Bibliografia
  • [1] E. Radziemska, E. Klugmann, Thermally affected parameters of the current–voltage characteristics of silicon photocell, Energy Convers. Manag. 43 (2002) 1889–1900, http://dx.doi.org/10.1016/S0196-8904(01)00132-7.
  • [2] P. Singh, N.M. Ravindra, Temperature dependence of solar cell performance—an analysis, Sol. Energy Mater. Sol. Cells 101 (2012) 36–45, http://dx.doi.org/10.1016/j.solmat.2012.02.019.
  • [3] S. Chander, A. Purohit, A. Sharma, S.P. Nehra, M.S. Dhaka, Impact of temperature on performance of series and parallel connectedmono-crystalline silicon solar cells, Energy Rep. 1 (2015) 175–180, http://dx.doi.org/10.1016/j.egyr.2015.09.001.
  • [4] Y.P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica 34 (1967) 149–154, http://dx.doi.org/10.1016/0031-8914(67)90062-6.
  • [5] Y. Xi, E.F. Schubert, Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method, Appl. Phys. Lett. 85 (2004) 2163–2165, http://dx.doi.org/10.1063/1.1795351.
  • [6] S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, E.F. Schubert, Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes, J. Appl. Phys. 97 (2005) 054506, http://dx.doi.org/10.1063/1.1852073.
  • [7] Y. Xi, J.-Q. Xi, T. Gessmann, J.M. Shah, J.K. Kim, E.F. Schubert, A.J. Fischer, M.H. Crawford, K.H.A. Bogart, A.A. Allerman, Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods, Appl. Phys. Lett. 86 (2005) 031907, http://dx.doi.org/10.1063/1.1849838.
  • [8] E.E. Perl, J. Simon, J.F. Geisz, M.L. Lee, D.J. Friedman, M.A. Steiner, Measurements and modeling of III-V solar cells at high temperatures up to 400 $ĉirc$C, IEEE J. Photovolt. 6 (2016) 1345–1352, http://dx.doi.org/10.1109/JPHOTOV.2016.2582398.
  • [9] C.R. Osterwald, Translation of device performance measurements to reference conditions, Sol. Cells 18 (1986) 269–279, http://dx.doi.org/10.1016/0379-6787(86)90126-2.
  • [10] K. Emery, C. Osterwald, Measurement of photovoltaic device current as a function of voltage, temperature, intensity and spectrum, Sol. Cells 21 (1987) 313–327, http://dx.doi.org/10.1016/0379-6787(87)90130-X.
  • [11] H.J. Hovel, R.K. Willardson, A.C. Beer, Semiconductors and Semimetals, Vol. 11, Academic Press, New York, 1975, Vol. 11.
  • [12] A.L. Fahrenbruch, R.H. Bube, Chapter 4 - application of the transport equation, in: Fundam. Sol. Cells, Academic Press, 1983, pp. 69–104, http://dx.doi.org/10.1016/B978-0-12-247680-8.50010-4.
  • [13] K.P. O’Donnell, X. Chen, Temperature dependence of semiconductor band gaps, Appl. Phys. Lett. 58 (1991) 2924–2926, http://dx.doi.org/10.1063/1.104723.
  • [14] K.-C. Chiu, Y.-C. Su, H.-A. Tu, Fit of temperature dependence of semiconductor band gaps, Jpn. J. Appl. Phys. 37 (1998) 6374–6375, http://dx.doi.org/10.1143/JJAP.37.6374.
  • [15] E. Miyazaki, S. Itami, T. Araki, Using a light-emitting diode as a high-speed, wavelength selective photodetector, Rev. Sci. Instrum. 69 (1998) 3751–3754, http://dx.doi.org/10.1063/1.1149174.
  • [16] R. Filippo, E. Taralli, M. Rajteri, L.E.Ds: Sources, Intrinsically bandwidth-limited detectors, Sensors 17 (2017) 1673, http://dx.doi.org/10.3390/s17071673.
  • [17] M. Kowalczyk, J. Siuzdak, Photo-reception properties of common LEDs, Opto-Electron. Rev. 25 (2017) 222–228, http://dx.doi.org/10.1016/j.opelre.2017.06.009.
  • [18] D.A. Lock, S.R.G. Hall, A.D. Prins, B.G. Crutchley, S. Kynaston, S.J. Sweeney, L.E.D. Junction Temperature, Measurement using generated photocurrent, J. Disp. Technol. 9 (2013) 396–401, http://dx.doi.org/10.1109/JDT.2013.2251607.
  • [19] F. Yang, M. Wilkinson, E.J. Austin, K.P. O’Donnell, Origin of the Stokes shift: a geometrical model of exciton spectra in 2D semiconductors, Phys. Rev. Lett. 70 (1993) 323–326, http://dx.doi.org/10.1103/PhysRevLett.70.323.
  • [20] R.W. Martin, P.G. Middleton, K.P. O’Donnell, W. Van der Stricht, Exciton localization and the Stokes’ shift in InGaN epilayers, Appl. Phys. Lett. 74 (1999) 263–265, http://dx.doi.org/10.1063/1.123275.
  • [21] K.P. O’Donnell, R.W. Martin, P.G. Middleton, Origin of Luminescence from InGaN diodes, Phys. Rev. Lett. 82 (1999) 237–240, http://dx.doi.org/10.1103/PhysRevLett.82.237.
  • [22] Journal of the Korean Physical Society, Springer.Com (n.d.). http://www.springer.com/physics/journal/40042 (Accessed 29 September 2017).
  • [23] F.M. Mims, Sun photometer with light-emitting diodes as spectrally selective detectors, Appl. Opt. 31 (1992) 6965–6967, http://dx.doi.org/10.1364/AO.31.006965.
  • [24] Y.B. Acharya, A. Jayaraman, S. Ramachandran, B.H. Subbaraya, Compact light-emitting-diode sun photometer for atmospheric optical depth measurements, Appl. Opt. 34 (1995) 1209–1214.
  • [25] D.R. Brooks, F.M. Mims, Development of an inexpensive handheld LED-base dSun photometer for the GLOBE program, J. Geophys. Res. Atmosp. 106 (2001) 4733–4740, http://dx.doi.org/10.1029/2000JD900545.
  • [26] F.M. Mims, An inexpensive and stable LED Sun photometer for measuring the water vapor column over South Texas from 1990 to 2001, Geophys. Res. Lett. 29 (2002) 20–21, http://dx.doi.org/10.1029/2002GL014776.
  • [27] Y.B. Acharya, Spectral and emission characteristics of LED and its application to LED-based sun-photometry, Opt. Laser Technol. 37 (2005) 547–550, http://dx.doi.org/10.1016/j.optlastec.2004.08.008.
  • [28] J. Rossiter, T. Mukai, A novel tactile sensor using a matrix of LEDs operating in both photoemitter and photodetector modes, IEEE Sens. 2005 (2005) 4, http://dx.doi.org/10.1109/ICSENS.2005.1597869.
  • [29] K. Okamoto, Intelligent non-conventional applications of LEDs, Trans. Jpn. Inst. Electron. Packag. 3 (2010) 116–123, http://dx.doi.org/10.5104/jiepeng.3.116.
  • [30] C. Weber, J.O. Tocho, E.J. Rodríguez, H.A. Acciaresi, Leds used as spectral selective light detectors in remote sensing techniques, J. Phys. Conf. Ser. 274 (2011) 012103, http://dx.doi.org/10.1088/1742-6596/274/1/012103.
  • [31] D.-Y. Shin, J.Y. Kim, I.-Y. Eom, Spectral responses of light-emitting diodes as a photodiode and their applications in optical measurements, Bull. Korean Chem. Soc. 37 (2016) 2041–2046, http://dx.doi.org/10.1002/bkcs.11030.
  • [32] S. Li, A. Pandharipande, F.M.J. Willems, Daylight sensing LED lighting system, IEEE Sens. J. 16 (2016) 3216–3223, http://dx.doi.org/10.1109/JSEN.2016.2520495.
  • [33] V. Lange, F. Lima, D. Kühlke, Multicolour LED in luminescence sensing application, Sens. Actuators Phys. 169 (2011) 43–48, http://dx.doi.org/10.1016/j.sna.2011.05.002.
  • [34] S. Li, A. Pandharipande, Color sensing and illumination with LED lamps, in: 2014 IEEE fourth int, Conf. Consum. Electron. Berl. ICCE-Berl. (2014) 1–2, http://dx.doi.org/10.1109/ICCE-Berlin.2014.7034294.
  • [35] S. Li, A. Pandharipande, LED-based color sensing and control, IEEE Sens. J. 15 (2015) 6116–6124, http://dx.doi.org/10.1109/JSEN.2015.2453408.
  • [36] M. O’Toole, D. Diamond, Absorbance based light emitting diode optical, Sens. Sens. Devices, Sens. 8 (2008) 2453–2479, http://dx.doi.org/10.3390/s8042453.
  • [37] R. Stojanovic, D. Karadaglic, Design of an oximeter based on LED-LED configuration and FPGA technology, Sensors 13 (2013) 574–586, http://dx.doi.org/10.3390/s130100574.
  • [38] E. Taralli, R. Filippo, G. Brida, M. Rajteri, S.R.G. Hall, A. Bialek, C. Greenwell, N. Fox, LED-based field radiometer for sensor web in-situ measurements, in: 2015 IEEE Metrol. Aerosp. MetroAeroSpace, 2015, pp. 318–322, http://dx.doi.org/10.1109/MetroAeroSpace.2015.7180675.
  • [39] J.S. Czapla-Myers, K.J. Thome, S.F. Biggar, Design, calibration, and characterization of a field radiometer using light-emitting diodes as detectors, Appl. Opt. 47 (2008) 6753–6762.
  • [40] B. Wu, S. Lin, T.M. Shih, Y. Gao, Y. Lu, L. Zhu, G. Chen, Z. Chen, Junction-temperature determination in InGaN light-emitting diodes using reverse current method, IEEE Trans. Electron. Devices 60 (2013) 241–245, http://dx.doi.org/10.1109/TED.2012.2228656.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e034520b-4820-4d6d-8a2c-a844d6baed3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.