Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Selected biophysical models for the radiation adaptive response
Języki publikacji
Abstrakty
W niniejszym artykule przeglądowym przedstawiono zagadnienie radiacyjnej odpowiedzi adaptacyjnej z punktu widzenia biofizycznego. Efekt ten – w dużym uproszczeniu – polega na wzmocnieniu mechanizmów naprawczych komórki oraz regulowaniu apoptozy i produkcji białek, w sytuacji napromienienia niską dawką lub mocą dawki promieniowania jonizującego. Jednakże efekt ten nie występuje zawsze, a jego powtarzalność eksperymentalna bywa częstokroć kwestionowana. Nie zmienia to faktu, że mechanizmy wywołujące odpowiedź adaptacyjną wymagają wciąż wielu badań, nie tylko radiobiologicznych, ale też fizycznych. W tym duchu powstało szereg modeli teoretycznych, a wybrane z nich zostały szczegółowo omówione w niniejszym artykule przeglądowym. Modele te stanowią dobry przykład możliwości współpracy na trójstyku biologii, fizyki i matematyki.
This review article presents the issue of radiation adaptive response from a biophysical point of view. This effect – to put it very simply – involves strengthening cell repair mechanisms and regulating apoptosis and protein production in the event of irradiation with a low dose or dose-rate of ionizing radiation. However, this effect does not always occur and its experimental repeatability is often questioned. This does not change the fact that the mechanisms causing the adaptive response still require a lot of research, not only radiobiological, but also physical. In this spirit, a number of theoretical models have been developed, and some of them are discussed in detail in this review article. These models are a good example of the possibilities of cooperation at the intersection of biology, physics and mathematics.
Wydawca
Czasopismo
Rocznik
Tom
Strony
21--38
Opis fizyczny
Bibliogr. 62 poz., rys., tab., wykr., wz.
Twórcy
autor
- Wydział Fizyki, Politechnika Warszawska
autor
- Wydział Fizyki, Politechnika Warszawska
Bibliografia
- [1] Antonelli, F., Belli, M., Cuttone, G., Dini, V., Esposito, G., Simone, G., ... & Tabocchini, M. A. (2005). Induction and repair of DNA double-strand breaks in human cells: dephosphorylation of histone H2AX and its inhibition by calyculin A. Radiation research, 164(4), 514-517.
- [2] Antonelli, F., Campa, A., Esposito, G., Giardullo, P., Belli, M., Dini, V., ... & Tabocchini, M. A. (2015). Induction and repair of DNA DSB as revealed by H2AX phosphorylation foci in human fibroblasts exposed to low-and high-LET radiation: relationship with early and delayed reproductive cell death. Radiation research, 183(4), 417-431.
- [3] Bakkenist, C. J., & Kastan, M. B. (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 421(6922), 499-506.
- [4] Banin, S., Moyal, L., Shieh, S. Y., Taya, Y., Anderson, C. W., Chessa, L., ... & Ziv, Y. (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science, 281(5383), 1674-1677.
- [5] Beucher, A., Birraux, J., Tchouandong, L., Barton, O., Shibata, A., Conrad, S., ... & Löbrich, M. (2009). ATM and Artemis promote homologous recombination of radiation‐ induced DNA double‐strand breaks in G2. The EMBO journal, 28(21), 3413-3427.
- [6] Bodgi, L., & Foray, N. (2016). The nucleo-shuttling of the ATM protein as a basis for a novel theory of radiation response: Resolution of the linear-quadratic model. International journal of radiation biology, 92(3), 117-131.
- [7] Bodgi, L., Granzotto, A., Devic, C., Vogin, G., Lesne, A., Bottollier-Depois, J. F., ... & Foray, N. (2013). A single formula to describe radiation-induced protein relocalization: Towards a mathematical definition of individual radiosen sitivity. Journal of theoretical biology, 333, 135-145.
- [8] Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A limited memory algorithm for bound constrained optimization. SIAM Journal on scientific computing, 16(5), 1190-1208.
- [9] Cai, L., & Liu, S. Z. (1990). Induction of cytogenetic adaptive response of somatic and germ cells in vivo and in vitro by low-dose X-irradiation. International journal of radiation biology, 58(1), 187-194.
- [10] Calvi, L. M., Frisch, B. J., Kingsley, P. D., Koniski, A. D., Love, T. M., Williams, J. P., & Palis, J. (2019). Acute and late effects of combined internal and external radiation exposures on the hematopoietic system. International Journal of Radiation Biology, 95(11), 1447-1461.
- [11] Canman, C. E., Lim, D. S., Cimprich, K. A., Taya, Y., Tamai, K., Sakaguchi, K., ... & Siliciano, J. D. (1998). Activation of the ATM kinase by ionizing radiation and phosphoryla tion of p53. Science, 281(5383), 1677-1679.
- [12] Castelino, J., Holland, P., Jacobs, O., Lapidot, M., & Markovic, M. (1997). Effects of ionizing radiation on blood and blood components: A Survey. International Atomic Energy Agency-TECDOC Series, 934.
- [13] Chadwick, K. H., & Leenhouts, H. P. (1973). Molecular theory of cell survival. Instituut voor Toepassing van Atoomenergie in de Landbouw, Wageningen, Netherlands.
- [14] Chakraborty, A., Tapryal, N., Venkova, T., Horikoshi, N., Pandita, R. K., Sarker, A. H., ... & Hazra, T. K. (2016). Classical non-homologous end-joining pathway utilizes nascent RNA for error-free double-strand break repair of transcribed genes. Nature communications, 7(1), 13049.
- [15] Cooper, G. M., & Ganem, D. (1997). The cell: a molecular approach. Nature Medicine, 3(9), 1042-1042.
- [16] Curtis, S. B. (1986). Lethal and potentially lethal lesions induced by radiation---a unified repair model. Radiation research, 106(2), 252-270.
- [17] Deutsch, V. R., & Tomer, A. (2006). Megakaryocyte development and platelet production. British journal of ha ematology, 134(5), 453-466.
- [18] Devic, C., Ferlazzo, M. L., & Foray, N. (2018). Influence of individual radiosensitivity on the adaptive response phenomenon: toward a mechanistic explanation based on the nucleo-shuttling of ATM protein. Dose-Response, 16(3), 1559325818789836.
- [19] Du, F., Zhang, M., Li, X., Yang, C., Meng, H., Wang, D., ... & Sun, Y. (2014). Dimer monomer transition and dimer re -formation play important role for ATM cellular function during DNA repair. Biochemical and biophysical research communications, 452(4), 1034-1039.
- [20] Esposito, G., Campa, A., Pinto, M., Simone, G., Tabocchini, M. A., & Belli, M. (2011). Adaptive response: modelling and experimental studies. Radiation protection dosimetry, 143(2-4), 320-324.
- [21] Feinendegen, L. E. (1999). The role of adaptive responses following exposure to ionizing radiation. Human & experimental toxicology, 18(7), 426-432.
- [22] Foray, N., Arlett, C. F., & Malaise, E. P. (1997). Radiation-induced DNA double-strand breaks and the radiosensitivity of human cells: a closer look. Biochimie, 79(9-10), 567-575.
- [23] Foray, N., Charvet, A. M., Duchemin, D., Favaudon, V., & Lavalette, D. (2005). The repair rate of radiation-induced DNA damage: a stochastic interpretation based on the gamma function. Journal of theoretical biology, 236(4), 448-458.
- [24] Guéguen, Y., Bontemps, A., & Ebrahimian, T. G. (2019). Adaptive responses to low doses of radiation or chemicals: their cellular and molecular mechanisms. Cellular and Molecular Life Sciences, 76, 1255-1273.
- [25] Huang, X., Halicka, H. D., & Darzynkiewicz, Z. (2004). Detection of histone H2AX phosphorylation on Ser‐139 as an indicator of DNA damage (DNA double‐strand breaks). Current protocols in cytometry, 30(1), 7-27.
- [26] Hulse, E. V. (1961). The recovery of myelopoietic cells after irradiation: A quantitative study in the rat. Brit. J. Haematol., 7.
- [27] Iliakis, G. (1988). Radiation-induced potentially lethal damage: DNA lesions susceptible to fixation. International journal of radiation biology, 53(4), 541-584.
- [28] Iliakis, G., Wang, H., Perrault, A. R., Boecker, W., Rosidi, B., Windhofer, F., ... & Pantelias, G. (2004). Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenetic and genome research, 104(1-4), 14-20.
- [29] Jarmakiewicz, R. (2021). Modelowanie efektu Yonezawy w biofizyce radiacyjnej. Wydział Fizyki, Politechnika Warszawska.
- [30] Jeggo, P. A., & Lobrich, M. (2007). DNA double-strand breaks: their cellular and clinical impact?. Oncogene, 26(56), 7717-7720.
- [31] Joubert, A., Zimmerman, K. M., Bencokova, Z., Gastaldo, J., Chavaudra, N., Favaudon, V., ... & Foray, N. (2008). DNA double-strand break repair defects in syndromes associated with acute radiation response: at least two different assays to predict intrinsic radiosensitivity?. International journal of radiation biology, 84(2), 107-125.
- [32] Kellerer, A. M., & Rossi, H. H. (1974). The theory of dual radiation action. Current Topics in Radiation Research Quarterly, 85-158.
- [33] Kivilaakso, E., & Rytömaa, T. (1971). Erythrocytic chalone, a tissue‐specific inhibitor of cell proliferation in the ery thron. Cell Proliferation, 4(1), 1-9.
- [34] Klonowski, W. (1983). Simplifying principles for chemical and enzyme reaction kinetics. Biophysical chemistry, 18(2), 73-87.
- [35] Kovalev, E. E., & Smirnova, O. A. (1996). Estimation of radiation risk based on the concept of individual variability of radiosensitivity (p. 202). Bethesda (MD): Armed Forces Radiobiology Research Institute.
- [36] Kuo, L. J., & Yang, L. X. (2008). γ-H2AX-a novel biomarker for DNA double-strand breaks. In vivo, 22(3), 305-309.
- [37] Leatherbarrow, E. L., Harper, J. V., Cucinotta, F. A., & O’Neill, P. (2006). Induction and quantification of γ-H2AX foci following low and high LET-irradiation. International journal of radiation biology, 82(2), 111-118.
- [38] Lim, D. S., Kirsch, D. G., Canman, C. E., AHN, J., ZIV, Y., NEWMAN, L., ... & KASTAN, M. (1998). Atm binds b-adaptin; a novel explanation for pleiotropic abnormalities in ataxia telangiectasia. Proc Natl Acad Sci USA, 98, 10146-10151.
- [39] Liu, S. (2020). Bioprocess engineering: kinetics, sustainability, and reactor design. Elsevier.
- [40] Lodish, H. F. (2008). Molecular cell biology. Macmillan.
- [41] Marples, B., & Joiner, M. C. (1993). The response of Chinese hamster V79 cells to low radiation doses: evidence of enhanced sensitivity of the whole cell population. Radia tion research, 133(1), 41-51.
- [42] Mitchel, R. E. (2010). The dose window for radiation-induced protective adaptive responses. Dose-Response, 8(2), dose-response.
- [43] National Institutes of Health – Stem cell information (dostęp: 18.02.2024 r.), https://stemcells.nih.gov/info/basics/ stc-basics/
- [44] Nias, A. H. W. (1998). An introduction to radiobiology. John Wiley & Sons.
- [45] Nikjoo, P. O’neill, Dt Goodhead and M. Terrissol, H. (1997). Computational modelling of low-energy electron-induced DNA damage by early physical and chemical events. International journal of radiation biology, 71(5), 467-483.
- [46] Olive, P. L., & Banáth, J. P. (2004). Phosphorylation of histone H2AX as a measure of radiosensitivity. International Journal of Radiation Oncology* Biology* Physics, 58(2), 331-335.
- [47] Perrault, R., Wang, H., Wang, M., Rosidi, B., & Iliakis, G. (2004). Backup pathways of NHEJ are suppressed by DNA‐PK. Journal of cellular biochemistry, 92(4), 781-794.
- [48] Podhorecka, M. (2009). γH2AX jako marker dwuniciowych pęknięć DNA. Postępy Higieny i Medycyny Doświadczalnej, 63, 92-98.
- [49] Rothkamm, K., & Löbrich, M. (2003). Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proceedings of the National Academy of Sciences, 100(9), 5057-5062.
- [50] Sacher, G. A., & Trucco, E. (1966). Theory of radiation injury and recovery in self-renewing cell populations. Radiation Research, 29(2), 236-256.
- [51] Sawicki, W. H., & Malejczyk, J. H. (2012). Wydawnictwo lekarskie PZWL. Warsaw, Poland.
- [52] Schipler, A., & Iliakis, G. (2013). DNA double-strand–break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic acids research, 41(16), 7589-7605.
- [53] Shadley, J. D., Afzal, V., & Wolff, S. (1987). Characterization of the adaptive response to ionizing radiation induced by low doses of X rays to human lymphocytes. Radiation Research, 111(3), 511-517.
- [54] Smirnova, O. A., & Yonezawa, M. (2003). Radioprotection effect of low level preirradiation on mammals: modeling and experimental investigations. Health physics, 85(2), 150-158.
- [55] Stępień, A., Izdebska, M., & Grzanka, A. (2007). The types of cell death. Advances in Hygiene and Experimental Medicine, 61.
- [56] Wedenberg, M. (2013). From cell survival to dose response: modeling biological effects in radiation therapy. Karolinska Institutet (Sweden).
- [57] Williams, M. V., Denekamp, J., & Fowler, J. F. (1985). A review of αβ ratios for experimental tumors: implications for clinical studies of altered fractionation. International Journal of Radiation Oncology* Biology* Physics, 11(1), 87-96.
- [58] Wolff, S. (1998). The adaptive response in radiobiology: evolving insights and implications. Environmental health perspectives, 106(suppl 1), 277-283.
- [59] Woodbine, L., Gennery, A. R., & Jeggo, P. A. (2014). The clinical impact of deficiency in DNA non-homologous end-joining. DNA repair, 16, 84-96.
- [60] Wydawnictwo Naukowe PWN – Chalony (dostęp 18.02.2024 r.), https://encyklopedia.pwn.pl/haslo/chalony;3884592.html
- [61] Yang, D. Q., Halaby, M. J., Li, Y., Hibma, J. C., & Burn, P. (2011). Cytoplasmic ATM protein kinase: an emerging therapeutic target for diabetes, cancer and neuronal degeneration. Drug discovery today, 16(7-8), 332-338.
- [62] Zhu, C., Byrd, R. H., Lu, P., & Nocedal, J. (1997). Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions on mathematical software (TOMS), 23(4), 550-560.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e03245b9-bb20-4768-a549-757e963e1f24