Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Landslides determine increases and decreases in specific soil compounds which is affecting soil fertility. The recovery of soil fertility is a long process and may be used as an indicator of the landslide age and can contribute to the management plan of the affected area. In order to add to data about soil properties affected by landslides, the current study focuses on a young and shallow landslide from the western part of the Transylvanian Depression. Soil samples were analysed from a physico-chemical point of view (pH, organic matter - OM, total organic carbon - TOC, major cations, and iron content) in two places, at between 0 and 60 cm depth (inside and outside the landslide). The results obtained showed lower values of pH inside the landslide, low values of TOC and rock fragments in both places studied (inside and outside the landslide) and no differences in soil texture between disturbed and undisturbed soil. The ammonium, magnesium and calcium content was higher outside the landslide, the sodium level was slightly higher outside the landslide, while the potassium concentration was higher inside the landslide. This study offers new data regarding recovery of soil fertility and highlights the importance of gaining knowledge on soil properties of relevance to future measures to increase the fertility of agricultural soils.
Czasopismo
Rocznik
Tom
Strony
931--941
Opis fizyczny
Bibliogr. 85 poz., wykr.
Twórcy
autor
- Babeş-Bolyai University, Interdisciplinary Research Institute on Bio-Nano Sciences, Treboniu Laurian 42, 400271 Cluj-Napoca, Romania
autor
- Babeş-Bolyai University, Faculty of Environmental Science and Engineering, Fântânele 30, 400294 Cluj-Napoca, Romania
autor
- Babeş-Bolyai University, Faculty of Environmental Science and Engineering, Fântânele 30, 400294 Cluj-Napoca, Romania
autor
- Babeş-Bolyai University, Faculty of Environmental Science and Engineering, Fântânele 30, 400294 Cluj-Napoca, Romania
autor
- Babeş-Bolyai University, Faculty of Geography, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
autor
- Babeş-Bolyai University, Department of Foreign Languages for Specific Purposes, Faculty of Letters, Horea 31, 400202 Cluj-Napoca, Romania
autor
- Babeş-Bolyai University, Faculty of Environmental Science and Engineering, Fântânele 30, 400294 Cluj-Napoca, Romania
Bibliografia
- 1. Adams, P., Sidle, R., 1987. Soil conditions in three recent landslides in Southeast Alaska. Forest Ecology and Management, 18: 93-102.
- 2. Adriano, A.D., 2001. Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Advances in Agronomy, 99: 183-225.
- 3. Alexandrowicz, Z., Margielewski, W., 2010. Impact of mass movements on geo- and biodiversity in the Polish Outer (Flysch) Carpathians. Geomorphology, 123: 290-304.
- 4. Alexandrowicz, Z., Margielewski, W., Perzanowska, J., 2003. European Ecological Network NATURA2000 in relation to landslide areas diversity: a case study in the Polish Carpathians. Ekológia, 22: 404-423.
- 5. Bajgier-Kowalska, M., Ziętara, T., 2002. The succession of landslide movements in the last five years in the Flysch Carpathians (in Polish with English summary). Problemy Zagospodarowania Ziem Górskich, 48: 31-42
- 6. Bălteanu, D., Chendeę, V., Sima, M., Enciu, P., 2010. A count try-wide spatial assessment of landslide susceptibility in Romania. Geomorphology, 124: 102-112.
- 7. Bilaşco, Ş., Horváth, C., Roşian, G., Sorin, F., Keller, I.E., 2011. Statistical model using GIS for the assessment of landslide susceptibility. Case-study: the Someş Plateau. Revue Roumain Géografie/Romanian Journal of Geography, 55: 91-101.
- 8. Blonska, E., Lasota, J., Piaszczyk, W., Viecheć, M., Klamerus-Iwan, A., 2018. The effect of landslide on soil organic carbon stock and biochemical properties of soil. Journal of Soil and Sediments, 18: 2727-2737.
- 9. Boadi, B., Preko, K., Amekudzi, L., 2014. Implications of soil magnetic susceptibility measurements from the Waste Site Deposit of Independence Hall. International Journal of Scientific and Research Publications, 4: 1-7.
- 10. Bordoni, M., Meisina, C., Vercesi, A., Bischetti, G., Chiaradia, E., Vergani, C., Chersich, S., Valentino, R., Bittelli, M., Comolli, R., Persichillo, M.G., Cislaghi, A., 2016. Quantifying the contribution of grapevine roots to soil mechanical reinforcement in an area susceptible to shall ow landslides. Soil and Tillage Research, 163: 195-206.
- 11. Bronowski, B., Chybiorz, R., Jura, D., 2016. Landslide susceptibility mapping in the Beskid Niski Mts., Western Carpathians (Dukla commune, Poland). Geological Quarterly, 60 (3): 586-596.
- 12. Bucur, I.I., Filipescu, S., Săsăran, E., 2001. Algae and Carbonate Platforms in the Western Part of Romania. Field Trip Guide Book Fourth Regional Meeting of IFAA. Cluj University Press, Cluj-Napoca.
- 13. Butler, D.R., 2001. Geomorphic process-disturbance corridors: a variation on a principle of landscape ecology. Progress in Physical Geography, 25: 237-248.
- 14. Casagrande, A., 1948. Classification and identification of soils. Transaction of the American Society of Civil Engineers, 113: 901-930.
- 15. Cheng, C-H., Hsiao, S-C., Huang, Y-S., Hung, C-Y., Pai, C-W., Chen, C-P., Menyailo, O.V., 2016. Landslides-induced changes of soil physiochemical properties in Xitou, Central Taiwan. Geoderma, 265: 187-195.
- 16. Codrea, V., Hosu, A., 2001. The Paleocene-Eocene formations and the Eocene/Oligocene boundary in the Jibou area (Sălaj county). In: Algae and Carbonate Platforms in Western Part of Romania (eds. 1.1. Bucur, S. Filipescu and E. Săsăran): 93-107. Field Trip Guide Book Fourth Regional Meeting of IFAACluj University Press, Cluj-Napoca, Romania.
- 17. Cornell, R.M., Schwertmann, U., 2003. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, Second Edition. Wiley-VCH, Weinheim.
- 18. Corominas, J., Van Westen, C., Frattini, P., Cascini, L., Mmallet, J.P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M.G., Pastor, M., Ferlisi, S., Tofani, V., Hervas, J., Smith, J.T., 2014. Recommendations for the quantitative analysis of land slide risk. Bulletin of Engineering Geology and the Environment, 73: 209-263.
- 19. Dearing, J., Morton, R., Price, T., Foster, I., 1986. Tracing movements of topsoil by magnetic measurement: two case studies. Physics of the Earth and Planetary Interiors, 42: 93-104.
- 20. Dikau, R., Brunsden, D., Schrott, L., Ibsen, M.L., 1996. Landslide Recognition, Identification, Movement and Causes. Wiley, Chichester, England.
- 21. Duan, L., Huang, M., Zhang, L., 2016. Differences in hydrological responses for different vegetation types on steep slope on the Loess Plateau China. Journal of Hydrology, 537: 356-366.
- 22. Fell, R., Ho, K., Lacasse, S., Leroi, E., 2005. A Framework for Landslide Risk Assessment and Management. Taylor and Francis Group, London.
- 23. Filipescu, S., 2001. Cenozoic lithostratigraphic units in Transylvanian. In: Algae and Carbonate Platforms in Western Part of Romania (eds. I. Bucur, S. Filipescu and E. Săsăran): 77-92. Field Trip Guide Book Fourth Regional Meeting of IFAA. Cluj University Press, Cluj-Napoca, Romania.
- 24. Geertsema, M., Pojar, J.J., 2007. Influence of landslides on biophysical diversity - a perspective from British Columbia. Geomorphology, 89: 55-69.
- 25. Gonzalez-Ollauri, A., Mickovski, S., 2017. Hydrological effect of vegetation against rainfall-induced landslides. Journal of Hydrology, 549: 374-387.
- 26. Gottardi, G., Galli, E., 1985. Natural Zeolites. Springer, Berlin.
- 27. Guariguata, M., 1990. Landslide disturbance and forest regeneration in the upper Luquillo Mountains of Puerto Rico. Journal of Ecology, 78: 814-832.
- 28. Hartman, G.F., Scrivener, J.C., Miles, M.J., 1996. Impacts of logging in Carnation Creek, a high-energy coastal stream in British Columbia, and their implication for restoring fish habitat. Canadian Journal of Fisheries and Aquatic Science, 53: 237-251.
- 29. Holtz, R., Kovacs, W., 1981. An Introduction to Geotechnical Engineering. Prentice-Hall, Englewood Cliffs, New Jersey, USA.
- 30. Hong, Y., Adler, R.F., 2007.Towards an early-warning system for global landslides triggered by rainfall and earthquake. International Journal of Remote Sensing, 28: 3713-3719.
- 31. Hong, Y., Adler, R.F., Huffman, G.J., 2007. An experimental global monitoring system for rainfall-triggered landslides using satellite remote sensing information. IEEE Transactions on Geosciences and Remote Sensing, 45: 1671-1680.
- 32. Hosu, A., 1999. Arhitectura sedimentatiei depozitelor eocene din nord-vestul Depresiunii Transilvaniei (in Romanian). Presa Universitară Clujeană, Cluj-Napoca.
- 33. IS-2720-Part 40-1970. Methods of test for soils: determination of free swell index of soil.
- 34. Knapen, A., Kitutu, M.G., Poesen, J., Breugelmans, W., Deckers, J., Muwanga, A., 2006. Landslides in a densely populated county at the footslopes of Mount Elgon (Uganda): characteristics and causal factors. Geomorphology, 73: 149-165.
- 35. Komak, M., 2012. Regional landslide susceptibility model using the Monte Carlo approach - the case of Slovenia. Geological Quarterly, 56 (1): 41-54.
- 36. Krézsek, C., Bally, A.W., 2006. The Transylvanian Basin (Romania) and its relation to the Carpathian fold and thrust belt: insights in gravitational salt tectonics. Marine and Petroleum Geology, 23: 405-442.
- 37. Le Borgne, E., 1955. Susceptbilité magnétique anormale du sol superficiel. Annals of Geophysics, 11: 399-419.
- 38. Law 575/2001. National spatial planning plan - Section V - Natural risk area.
- 39. Lu, N., Godt, J., 2013. Hillslope Hydrology and Stability. Cambridge University Press.
- 40. Lundgren, L., 1978. Studies of soil and vegetation development on fresh landslide scars in the Mgeta Valley, Western Uluguru Mountains, Tanzania. Geografiska Annaler: Series A, Physical Geography, 60: 91-127.
- 41. Lüth, C., Tasser, E., Niedrist, G., Dalla Via, J., Tappeiner, U., 2011. Plant communities of mountain grasslands in a broad cross-section of the Eastern Alps. Flora, 206: 433-443.
- 42. Magura, T., 2017. Ignoring funcitonal and phylogenetic features masks the edge influence on ground beetle diversity across forest-grassland gradient. Forest Ecology and Management, 384: 371-377.
- 43. Manjusha, J., 1990. A study on soil and vegetation changes after landslide in Kumaun Himalaya. Proceedings of the Indian National Science Academy, 4: 351-360.
- 44. May, C.L., Gresswell, R.E., 2003. Processes and rates of sediment and wood accumulation in headwater streams of the Oregon Coast Range, USA. Earth Surface Processes and Landforms, 28: 409-424.
- 45. McVicar, T., van Niel, T., Li, L., Wen, Z., Yang, Q., Li, R., Jiao, F., 2010. Parsimoniously modelling perennial vegetation suitability and identifying priority areas to support China's re-vegetation program in the Loess Plateau: matching model complexity to data availability. Forest Ecology and Management, 259: 1277-1290.
- 46. Mickovski, S., Hallet, P., Bransby, M., Davis, M., Sonnenberg, R., Bengough, A., 2009. Mechanical reinforcement of soil by willow roots: impacts of roots properties and root failure mechanisms. Soil Science Society of America Journal, 73: 1276-1285.
- 47. Miller, F.T., Guthrie, R.L., 1984. Classification and distribution of soils containing rock fragments in the United States. Soil Science Society of America Journal Special Publication, 13: 1-6.
- 48. Montgomery, D.R., Massong, T.M., Hawley, S.C.S., 2003. Intence of debris flows and log jams on the location of pools and alluvial channel reaches, Oregon Coast Range. GSA Bulletin, 115: 78-88.
- 49. Moos, A., 1938. Geotechnische Eigenschaften und Untersuchungsmethoden der Lockergesteine. Erdbaukurs der E.T.H. 4, Zurich.
- 50. Mrozek, T., Laskowicz, I., Zabuski, L., Kulczykowski, M., Świdziński, W., 2016. Landslide susceptibility and risk assessment in a non-mountainous region - a case study of Koronowo, northern Poland. Geological Quarterly, 60 (3): 758-769.
- 51. Mullins, C.E., 1977. Magnetic susceptibility of the soil and its significance in soil science a review. Journal of Soil Science, 28: 223-246.
- 52. Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., Jaedicke, C., 2006. Global landslide and aval anche hotspots. Landslides, 3: 159-173.
- 53. Norris, J., Achim, A., Nicoll, B., van Beek, R., Mickovski, S., 2008. Slope Stability and Erosion Control: Ecotechnological Solutions. Springer.
- 54. Ohlmacher, G.C., 2000. The relationship between geology and landslide hazards of Atchison, Kansas, and vicinity. Current Research in Earth Sciences, 244:1-16.
- 55. Pandey, U., Singh, J.S., 1984. Energy-flow relationships between agro- and forest ecosystems in Central Himalaya. Environmental Conservation, 11: 45-53.
- 56. Parker, G., 1983. Throughfall and stemflow in the forest nutrient cycle. Advances in Ecological Research, 13: 57-133.
- 57. Petley, D., 2012. Global patterns of loss of life from landslides. Geology, 40: 927-930.
- 58. Pickett, S.T.A., Wu, J., Cadenasso, M.L., 1999. Patch dynamics and the ecology of disturbed ground: a framework for synthesis. In: Ecosystems of Disturbed Grounds (ed. L.R. Walker): 707-722. Elsevier, Amsterdam.
- 59. Popescu, B., 1978. On the lithostratigraphic nomenclature of the NW Transilvania Eocene. Revue Roumain Géologie Géophysic Géografie (Géologie), 22: 99-107.
- 60. Poprawa, D., Rączkowski, W., 2003. Carpathian landslides (southern Poland) (in Polish with English summary). Przegląd Geologiczny, 51: 685-692.
- 61. Proust, J.N., Hosu, A., 1996. Sequence stratigraphy and Paleogene tectonic evolution of the Transylvanian Basin (Romania, eastern Europe). Sedimentary Geology, 105: 117-140.
- 62. Răileanu, G., Saulea, E., 1956. Paleogenul din regiunea Cluj ° Jibou (NV bazinului Transilvaniei) (in Romanian). Anuarul Comitetului Geologic, 29: 271-308.
- 63. Reddy, V., Singh, J., 1993. Changes in vegetation and soil during succession following landslides disturbance in the Central Himalaya. Journal of Environmental Management, 39: 235-250.
- 64. Roşian, G., Horváth, C., Réti, K-O., Bojan, C-N., Gavrilă, I.G., 2016. Assessing landslide vulnerability using bivariate statistical analysis and the frequency ratio model. Case study: Transylvanian Plain (Romania). Zeitschrift für Geomorphologie, 60: 359-371.
- 65. Roşian, G., Horváth, C., Muntean, L-O., Baciu, N., Arghiuę, V-I., Maloş, C-V., Măcicăşan, V., 2018. Analysing landslides spatial distribution using GIS. Case study: Someşan Plateau. Ecoterra, 15: 27-34.
- 66. Rusu, A., 1995. Eocene formation in the Călata region (NW Transylvania): a critical review. Romanian Journal of Tectonics and Regional Geology, 76: 59-72.
- 67. Schwertmann, U., 1988. Occurrence and formation of iron oxides in various pedoenvironments. In: Iron in Soils, Clay Minerals (eds. J.W. Stucki, B.A. Goodman and U. Schwertmann): 267-308. D. Reidel, Dordrecht.
- 68. Shiels, A.B., Walker, L.R., Thompson, D.B., 2006. Organic matter inputs variable resource patches on Puerto Rico landslides. Plant Ecology, 184: 223-236.
- 69. Shrumpf, M., Guggenberger, G., Valarezo, C., Zech, W., 2001. Tropical montane rain forest soils. Development and nutrient status along an altitudinal gradient in the South Ecuadorian Andes. Die Erde, Zeitschrift der Gesellschaft für Erdkunde zu Berlin, 132: 43-59.
- 70. Skempton, A. W., 1948. The effect ive stresses in saturated clays strained at constant volume. Proceedings of the Seventh International Congress on Applied Mechanics, 1: 378-392.
- 71. Skempton, A.W., 1953.The colloidal “activity” of clays. In: Proceedings of the Third International Conference on Soil Mechanics and Foundation Engineering. Zurich, Switzerland, ICOSOMEF, 1: 57-61.
- 72. Sojneková, M., Chytrý, M., 2015. From arable land to species-rich semi-natural grass lands: Succession in abandoned fields in a dry region of central Europe. Ecological Engineering, 77: 373-381.
- 73. SR ISO 11465:1998. Soil quality. Determination of dry matter and water content on a mass basis - gravimetric method.
- 74. SR EN 14688-2:2005. Grain-size (sedimentation and sift method).
- 75. SR EN ISO 17892-2:2014. Geotechnical investigation and testing - Laboratory testing of soil - Part 2: Determination of bulk density.
- 76. STAS 1913/5-85. Foundation ground. Determination of grain size.
- 77. STAS 1913/4-86. Foundation ground. Determination of plastic limits.
- 78. Stokes, A., Douglas, G., Fourcaud, T., Ciadrossich, F., Gillies, C., Hubble, T., 2014. Ecological mitigation of hillslope instability: ten key issues faci ng researchers and practitioners. Plant and Soil, 337: 1-23.
- 79. Stucki, J.W., Lee, K., Zhang, L., Larson, R.A., 2002. Effects of iron oxidation state on the surface and structural properties of smectites. Pure and Applied Chemistry, 74: 2145-2158.
- 80. Underwood, L.B., 1967. Classification and identification of shales. Proceedings of the American Society of Civil Engineers, Journal of the Soil Mechanics and Foundations Division, SM6, 93: 97-116.
- 81. Van Eynde, E., Dondeyne, S., Isabirye, M., Deckers, J., Poesen, J., 2017. Impact of landslides on soil characteristics: implications for estimating their age. Catena, 157: 173-179.
- 82. Walker, L., Shiels, A., 2013. Physical Causes and Consequences. Landslide Ecology. Cambridge University Press, Cambridge.
- 83. Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37: 29-38.
- 84. Wu, H., 1979. Strength of tree roots and landslides on Prince of Wales Island, Alaska. Canadian Geotechnical Journal, 16: 19-33.
- 85. Zarin, D.J., Johnson, A.H., 1995. Base saturation, nutrient cation, and organic matter increases during early pedogenesis on landslide scars in the Luquillo Experimental Forest, Puerto Rico. Geoderma, 65: 317-330.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e02e0905-42af-48f0-bffd-8705685d90d1