PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Calculations with a Multi-layer Model of Mixed Sand Transport Against Measurements in Wave Motion and Steady Flow

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
A multi-layer model is used to calculate time-dependent sediment velocity and concentration vertical profiles. This model, in which the differences in sediment transport at different distances from the bed are considered is intended both for the wave motion and steady flow. Numerical calculations were carried out for sediment transport during the wave crest and trough and total sediment transport as a sum of their absolute values. The model concept of variation in shear stress from the skin stress value above the bed to the stress value at the bed previously proposed for steady flow is extended here for the wave motion and verified by direct stress measurements. The calculations were carried out for mixed sand sediments with different grain size distributions including semi-uniform and poorly sorted grains. Comparison with the available small- and large-scale data from flumes and oscillating tunnels yields agreement typically within plus/minus a factor two of measurements.
Rocznik
Tom
Strony
629--641
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
  • Koszalin University of Technology, Poland
autor
  • Koszalin University of Technology, Poland
  • Koszalin University of Technology, Poland
Bibliografia
  • Berzi, D., & L. Fraccarollo. (2016). Intense sediment transport: Collisional to turbulent suspension. Phys. Fluids, 28(2): 023302. DOI: 10.1063/1.4941770.
  • Briganti, R., N. Dodd, G. Incelli, & G. Kikkert. (2018). Numerical modelling of the flow and bed evolution of a single bore-driven swash event on a coarse sand beach. Coastal Eng., 142, 62-76. DOI: 10.1016/j.coastaleng.2018.09.006.
  • Cheng, Z., T.-J. Hsu, & J. Calantoni. (2017). SedFoam: A multi-dimensional Eulerian two-phase model for sediment transport and its application to momentary bed failure. Coastal Eng., 119, 32-50. DOI: 10.1016/j.coastaleng.2016.08.007.
  • Cloin, B. (1998). Gradation effects on sediment transport in oscillatory sheet-flow. Prog. Rep. H2305. Delft, Netherlands: WL/Delft Hydraulics.
  • Deigaard, R. (1993). Modelling of sheet flow: Dispersion stresses versus the diffusion concept. Prog. Rep. Lyngby, Denmark: ISVA. Technical Univ. of Denmark.
  • Dohmen-Janssen, C. M., & D. M. Hanes. (2002). Sheet flow dynamics under monochromatic nonbreaking waves. J. Geophys. Res., 107(C10), 3149. DOI: 10.1029/2001JC001045.
  • Fredsøe, J. (1984). Turbulent boundary layer in combined wave-current motion. J. Hydraul. Eng. 110(8), 1103-1120.
  • Furbish, D. J., P. K. Haff, J. C. Roseberry, & M.W. Schmeeckle. (2012). A probabilistic description of the bed load sediment flux: 1. Theory. J. Geo-Phys. Res. Earth Surf. 117(F3): 3031. DOI: 10.1029/2012JF002352.
  • Hassan, W.N., & J.S. Ribberink. (2003). Transport processes of uniform and mixed sands in oscillatory sheet flow. Coastal Eng. 52, 745-770. DOI: 10.1016/j.coastaleng.2005.06.002.
  • Hsu, T., & J. T. Jenkins. (2004). On two-phase sediment transport: Sheet flow of massive particles. Proc. R. Soc. Lond. A 460 (2048), 2223-2250. DOI: 10.1098/rspa.2003.1273.
  • Jiang, Z., & T. E. Baldock. (2015). Direct bed shear measurements under loose bed swash flows. Coastal Eng., 100, 67-76. DOI: 10.1016/j.coastaleng.2015.04.0010378-3839.
  • Kaczmarek, L. M., J. Biegowski, & R. Ostrowski. (2004). Modelling cross-shore intensivesand transport and changes of bed grain size distribution versus field data. Coastal Eng., 51(5-6), 501-529. DOI: 10.1016/j.coastaleng.2004.05.007.
  • Kaczmarek, L. M., S. Sawczyński, & J. Biegowski. (2015). Hydrodynamic equilibrium for sediment transport and bed response to wave motion. Acta Geophys., 63(2), 486-513. DOI: 10.1515/acgeo-2015-0008.
  • Kaczmarek, L. M., S. Sawczyński, & J. Biegowski. (2017) An equilibrium transport formula for modeling sedimentation of dredged channels. Coastal Eng. J., 59(3), 1750015-1750015-35. DOI: 10.1142/S0578563417500152.
  • Kaczmarek, L. M., J. Biegowski, & Ł. Sobczak. (2019). Modeling of Sediment Transport in Steady Flow over Mobile Granular Bed. J. Hydraul. Eng., 145(4), 04019009. DOI: 10.1061/(ASCE)HY.1943-7900.0001566. King, D.B. (1991). Studies in oscillatory flow bedload sediment transport. PhD Thesis. USA, San Diego: Univ. of California.
  • Meyer-Peter, E., & R. Müller. (1948). Formulas for bed-load transport. In Proc., 2nd Meeting of the Int. Association for Hydraulic Structures Research. Delft, Netherlands: International Association for Hydro-Environment Engineering and Research.
  • O'Donoghue, T., & S. Wright. (2004a). Concentrations in oscillatory sheet flow for well sorted and graded sands. Coastal Eng., 50(3), 117-138. DOI: 10.1016/j.coastaleng.2003.09.004.
  • Rankin, K. L., & R. I. Hires. (2000). Laboratory measurement of bottom shear stress on a movable bed. J. Geo-Phys. Res. – Oceans., 105(C7) 17011-17019. DOI: 10.1029/2000JC900059.
  • Ribberink, J. S., & A. Al-Salem. (1995). Sheet flow and suspension of sand in oscillatory boundary layers. Coastal Eng., 25(3-4), 205-225. DOI: 10.1016/0378-3839(95)00003-T.
  • Schretlen, J.L.M. (2012). Sand transport under full-scale progressive surface waves. PhD thesis. Enschede, Netherlands: Univeristy of Twente.
  • Silva, P. A., A. Temperville, & F. S. Santos. (2006). Sand transport under combined current and wave conditions: A semi-unsteady, practical model. Coastal Eng., 53(11), 897-913. DOI: 10.1016/j.coastaleng.2006.06.010.
  • Van der A, D. A., T. O'Donoghue, & J. S. Ribberink. (2010). Measurements of sheet flow transport in acceleration-skewed oscillatory flow and comparison with practical formulations. Coastal Eng., 57(3), 331-342. DOI: 10.1016/j.coastaleng.2009.11.006.
  • Van Rijn, L. C. (2007a). Unified view of sediment transport by currents and waves. I: Initiation of motion, bed roughness and bed-load transport. J. Hydraul. Eng., 133(6), 649-667.
  • Van Rijn, L. C. (2007b). Unified view of sediment transport by currents and waves. II: Suspended transport. J. Hydraul. Eng., ASCE, 133(6), 668-689.
  • Van Rijn, L. C. (2007c). Unified view of sediment transport by currents and waves. III: Graded beds. J. Hydraul. Eng., ASCE, 133(7), 761-775.
  • Van Rijn, L. C., D.J.R. Walstra, & M van Ormondt. (2007d). Unified view of sediment transport by currents and waves. IV: Application of morphodynamic model. J. Hydraul. Eng., ASCE, 133(7), 776-793.
  • Vowinckel, B., V. Nikora, T. Kempe, & J. Fröhlich. (2017a). Momentum balance in flows over mobile granular beds: Application of double averaging methodology to DNS data. J. Hydraul. Res., 55(2), 1-18. DOI: 10.1080/00221686.2016.1260656.
  • Vowinckel, B., V. Nikora, T. Kempe, & J. Fröhlich. (2017b). Spatially averaged momentum fluxes and stresses in flows over mobile granular beds: A DNS-based study. J. Hydraul. Res. 55(2), 208-223. DOI: 10.1080/00221686.2016.1260658.
Identyfikator YADDA
bwmeta1.element.baztech-e0298843-390a-44d5-b2a1-9647475beb78