PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Leaching of heavy metals from monolithic waste

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Leaching of heavy metals (Zn, Pb, Cu, Ni and Cr) from hazardous waste originating from steel works (slag) has been investigated. Contaminant leaching behavior from monolithic waste materials in the function of time was examined. There was established the cumulative leaching of elements per surface area of waste material and the impact of the duration of the leachant contact with the waste on the leachability. The types of processes accompanying the release of heavy metals were determined as well. Surface wash-off and dissolution were dominant processes during the leaching of the analyzed elements. Chromium was the only element whose release from the sample was controlled by diffusion when subjected to leaching in a liquid of pH 7. Due to the low levels of heavy metal leaching in relation to their concentrations in the samples, it seems that longer duration of the tank test can contribute to the release of additional amounts of the heavy metals.
Rocznik
Strony
143--158
Opis fizyczny
Bibliogr. 28 poz., tab., rys.
Twórcy
autor
  • Opole University of Technology, Department of Environmental Engineering, ul. Mikołajczyka 5, 45-271 Opole, Poland
autor
  • Opole University of Technology, Department of Environmental Engineering, ul. Mikołajczyka 5, 45-271 Opole, Poland
Bibliografia
  • [1] LIS T., NOWACKI K., ŻELICHOWSKA M., KANIA H., Innovation in metallurgical waste management, Metalurgija, 2015, 54 (1), 283.
  • [2] SITKO J., Problem analysis recycling of metallurgical waste, Scientific Papers of Silesian University of Technology, Organization and Management Series, 2014, 73, 531 (in Polish).
  • [3] PROCTOR D.M., FEHLING K.A., SHAY E.C., WITTENBORN J.L., GREEN J.J., AVENT C., BIGHAM R.D., CONNOLLY M., LEE B., SHEPKER T.O., ZAK M.A., Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags, Environ. Sci. Technol., 2000, 34 (8), 1576.
  • [4] BARICOVÁ D., PRIBULOVÁ A., DEMETER P., BUĽKO B., ROSOVA A., Utilizing of the metallurgical slag for production of cementless concrete mixtures, Metalurgija, 2012, 51 (4), 465.
  • [5] EMERY J., Mineral aggregate conservation reuse and recycling, Geotechnical Engineering Limited for Aggregate and Petroleum Resources Section, Ontario Ministry of Natural Resources, Ontario, 1992.
  • [6] FATHY S., LIPING G., RUI M., CHUPING G., WEI S., Chemistry, mineralogy and morphology of steel slag and stainless steel slag. A comparative study, Proc. Academics World International Conference Cairo, Egypt, 2016.
  • [7] JONCZY I., Forms of occurrence of selected metals in metallurgical slags in comparison with their geochemical properties, Min. Resour. Manage., 2012, 28 (1), 63 (in Polish).
  • [8] CHAN B.K.C., BOUZALAKOS S., DUDENEY A.W.L., Integrated waste and water management in mining and metallurgical industries, Trans. Nonf. Met. Soc. China, 2008, 18, 1497.
  • [9] European Commission, Waste Framework Directive 2008/98/EC, 2008 (O.J. EC L, 312/3, 22.11.2008).
  • [10] KRÓL A., Durability of stabilised galvanic sewage sludge against the impact of sea water and sulfate solutions, Environ. Prot. Eng., 2012, 38 (4), 29.
  • [11] VAN DER SLOOT H.A., VAN ZOMEREN A., Characteristaion leaching tests and associated geochemical speciation modeling to assess long term release behavior from extractive wastes, Mine Water Environ., 2012, 31, 92.
  • [12] KRÓL A., MIZERNA K., Directions of development of research methods in the assessment of leaching of heavy metals from mineral waste, 1st International Conference on the Sustainable Energy and Environment Development (SEED) 2016, 10, 00050.
  • [13] LU H., WEI F., TANG J, GIESY J.P., Leaching of metals from cement under simulated environmental conditions, J. Environ. Manage., 2016, 169, 319.
  • [14] VAN DER SLOOT H.A., VAN ZOMEREN A., MEEUSSEN J.C.L., SEIGNETTE P., BLEIJERVELD R., Interpretation of test method selection, validation against field data, and predictive modelling for impact evaluation of stabilised waste disposal, J. Hazard. Mater., 2007, 141 (2), 354.
  • [15] SANAK-RYDLEWSKA S., GALA A., WAJDA Ł., Environmental hazards of the metallurgical wastes dumping sites-barium and arsenic ions elimination with ionits, Min. Resour. Manage., 2011, 27 (2), 79.
  • [16] JONCZY I., HUBER M., LATA L., Vitrified metallurgical wastes after zinc and lead production from the dump in Ruda Śląska in the aspect of mineralogical and chemical studies, Min. Resour. Manage., 2014, 30 (1), 161 (in Polish).
  • [17] ŠTULOVIĆ M., IVŠIĆ-BAJČETA D., RISTIĆ M., KAMBEROVIĆ Ž., KORAĆ M., ANĐIĆ Z., Leaching properties of secondary lead slag stabilized/solidified with cement and selected additives, Environ. Prot. Eng., 2013, 39 (3), 149.
  • [18] EA NEN 7375, Leaching characteristics of moulded or monolithic building and waste materials. Determination of leaching of inorganic components with the diffusion test. The tank test, 2004.
  • [19] EN 15965, Sludge, treated biowaste, soil and waste. Determination of loss on ignition, 2012.
  • [20] EN 196-2, Method of testing cement. Part 2: Chemical analysis of cement, 2013.
  • [21] EN 12457-2, Characterisation of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. Part 2: One stage batch test at a liquid to solid ratio of 10 l/kg, 2002.
  • [22] Regulation of the Ministry of Economy of 16 July 2015 on the acceptance of waste for landfill, Poland’s Journal of Laws dated September 1, 2015, item 1277.
  • [23] NEN 7347, Leaching characteristics of solids earthy and stony building and waste materials. Leaching tests. Determination of the leaching of inorganic components from compacted granular materials, 2006.
  • [24] CEN/TS 15863, Characterisation of waste. Leaching behaviour test for basic characterisation. Dynamic monolithic leaching test with periodic leachant renewal, under fixed test conditions, 2012.
  • [25] U.S. Environmental Protection Agency, Draft Method 1315, Mass transfer rates of constituents in monoliths or compacted granular materials using a semi-dynamic tank leaching test, 2009.
  • [26] MALVIYA R., CHAUDHARY R., Evaluation of leaching characteristics and environmental compatibility of solidified/stabilized industrial waste, J. Mater. Cycles Waste Manage., 2006, 8, 78.
  • [27] EA NEN 7371, Leaching characteristics of granular building and waste materials. The determination of the availability of inorganic components for leaching. The maximum availability leaching test, 2004.
  • [28] Environmental Protection, Criteria for waste acceptable at landfills for hazardous waste, The Landfill (England and Wales) (Amendment) Regulations 2005, No. 1640.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0269e3e-c5a9-47c1-bb80-b1e188d58b6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.