PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flood Frequency Analysis and Hydraulic Design of Bridge at Mashan on River Kunhar

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Kunhar River hydrology and hydraulic design of a bridge on this river are being studied using HEC-Geo-RAS and Hydrologic Engineering Centers River Analysis System (HEC-RAS). The river flows in the northern part of Pakistan and is 170 km long. On both sides of the river, there are residential settlements. The river hydraulics is studied by using 30-metre remotely sensed shuttle radar topographic mission - digital elevation model (SRTM DEM) and Arc Map. 32 cross-sections are imported from Geographic Information System (GIS) to HEC-RAS. On historical peak flow results, the extreme value frequency distribution is applied, and a flood is determined for a 100-year return period, with a discharge estimated as 2223 cubic metres. Three steady flow profiles are adopted for HEC-RAS, the first is for the maximum historical peak data, the second is for the 100-year return period, and the third profile is for the latter 100-year period with a safety factor of 1.28. With remote sensing-based assessments, the proposed location for a bridge is determined and then verified with a field survey which was physically conducted. The maximum water height estimated in the river is about 4.26 m. This bridge will facilitate about 50 thousand population of Masahan and its surroundings. It will create a shortest link between Khyber Pakhtunkhwa and Azad Kashmir and thus will enhance tourism and trade activities.
Rocznik
Strony
1--12
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • The University of Lahore, Faculty of Civil Engineering and Technology, Department of Technology, 1-km defence Road Bhobatian Chowk, Lahore, 54590, Pakistan
  • The University of Lahore, Faculty of Civil Engineering and Technology, Department of Technology, 1-km defence Road Bhobatian Chowk, Lahore, 54590, Pakistan
  • The University of Lahore, Faculty of Civil Engineering and Technology, Department of Technology, 1-km defence Road Bhobatian Chowk, Lahore, 54590, Pakistan
  • The University of Lahore, Faculty of Civil Engineering and Technology, Department of Technology, 1-km defence Road Bhobatian Chowk, Lahore, 54590, Pakistan
  • Bu-Ali Sina University, Faculty of Agriculture, Department of Water Engineering, Hamedan,65178, Iran
autor
  • The University of Lahore, Faculty of Civil Engineering and Technology, Department of Technology, 1-km defence Road Bhobatian Chowk, Lahore, 54590, Pakistan
Bibliografia
  • Amin M. T., Rizwan M., Alazba A. A. (2016) A best-fit probability distribution for the estimation of rainfall in northern regions of Pakistan., Open Life Sciences, 11 (1), 432–440.
  • Birkland T. A., Burby R. J., Conrad D., Cortner H., Michener W. K. (2003) River ecology and flood hazard mitigation, Natural Hazards Review, 4 (1), 46–54.
  • Bronstert A. (2003) Floods and climate change: interactions and impacts, Risk Analysis: An International Journal, 23 (3), 545–557.
  • Charley W. J. (1988) The estimation of rainfall for flood forecasting using radar and rain gauge data (No. HEC-TP-122), HYDROLOGIC ENGINEERING CENTER DAVIS CA.
  • Cook A. C. (2008) Comparison of one-dimensional HEC-RAS with two-dimensional FESWMS model in flood inundation mapping, Graduate School, Purdue University, West Lafayette.
  • De Silva M. M. G. T.,Weerakoon S. B., Herath S., Ratnayake U. R., Mahanama S. (2012) Flood Inundation Mapping along the Lower Reach of Kelani River Basin under the Impact of Climatic Change, Engineer, 45 (02), 23—29.
  • Duvvuri S.,Narasimhan B. (2013) Flood inundation mapping of thamiraparani river basin using hec-geo ras and swat, International Journal of Engineering Research and Technology, 2 (7), 1408–1420.
  • Fosu C., Forkuo E. K., Asare M. Y. (2012) River Inundation and Hazard Mapping – a Case Study of Susan River – Kumasi, Journal of Global Geospatial Conference, Quebec City, Canada.
  • Graham D. N., Angel E. A. (2001) Flexible, integrated watershed modeling with MIKE SHE,Watershed models, 849336090, 245–272.
  • Gunasekara I. P. A. (2008) Flood hazard mapping in the lower reach of Kelani river, Engineer, XXXXI (5), 149–154.
  • Hicks F., Peacock T. (2005) Suitability of HEC-RAS for Flood Forecasting., CanadianWater Resources Journal, 30 (2), 159–174.
  • Horritt M., Bates P. (2002) Evaluation of 1D and 2D numerical models for predicting river flood inundation, Journal of Hydrology, 268 (1–4), 87–99.
  • Jalali-Rad R. (2002) Flood zoning of Tehran urban watershed using GIS, Master’s thesis, Tarbiat Modares University.
  • Kute S., Kakad S., Bhoye V.,Walunj A. (2014) Flood modeling of river Godavari using HEC-RAS, Int J Res Eng Technol, 3 (09), 81–87.
  • Maidment D. R., Tate E. C. (1999) Floodplain mapping using HEC-RAS and ArcView GIS, Doctoral dissertation, Center for Research in Water Resources, the University of Texas at Austin).
  • Malik M., Ahmad F. (2014) Flood inundation Mapping and Risk Zoning of the Sawat River Pakistan Using HEC—RAS Model, ISSN, 3, 45.
  • Millington N., Das S., Simonovic S. P. (2011) The comparison of GEV, log-Pearson type 3 and Gumbel distributions in the Upper Thames River watershed under global climate models, Water Resources Research Report, 40.
  • Parker D., Tunstall S.,Wilson T. (2005) Socio-economic benefits of flood forecasting and warning, Flood Hazard Research Centre, Middlesex University, Queensway, Enfield, EN3 4SF, London, UK.
  • Pathan A. I. Agnihotri P. G. (2021) Application of new HEC-RAS version 5 for 1D hydrodynamic flood modeling with special reference through geospatial techniques: a case of River Purna at Navsari, Gujarat, India, Modeling Earth Systems and Environment, 7 (2), 1133–1144.
  • Saifullah M., Adnan M., Zaman M.,Wałega A., Liu S., Khan M. I., Muhammad S. (2021) Hydrological Response of the Kunhar River Basin in Pakistan to Climate Change and Anthropogenic Impacts on Runoff Characteristics, Water, 13, 3163.
  • Salajegheh A., Bakhshaei M., Chavoshi S., Keshtkar A. R., Najafi Hajivar M. (2009) Floodplain mapping using HEC-RAS and GIS in semi-arid regions of Iran, Desert, 14 (1), 83–93.
  • Schreider S. Y., Whetton P. H., Jakeman A. J., Pittock A. B. (1997) Runoff modeling for snow-affected catchments in the Australian alpine region, eastern Victoria., Journal of Hydrology, 200 (1–4), 1–23.
  • Tan K. S., Chiew F. H. S., Grayson R. B., Scanlon P. J., Siriwardena L. (2005) Calibration of a daily rainfall-runoff model to estimate high daily flows, MODSIM 2005 International Congress on Modelling and Simulation, Melbourne.
  • Ti Z., Zhang M., Li Y., Wei K. (2019) Numerical study on the stochastic response of a long-span sea-crossing bridge subjected to extreme nonlinear wave loads, Engineering Structures, 196, 109287.
  • Toth E., Brath A., Montanari A. (2000) Comparison of short-term rainfall prediction models for real-time flood forecasting, Journal of hydrology, 239 (1–4), 132–147.
  • Tsay J. Y. (2021) Feasibility Study of Super-Long Span Bridges Considering Aerostatic Instability by a Two-Stage Geometric Nonlinear Analysis, International Journal of Structural Stability and Dynamics, 21 (03), 2150033.
  • Wangpimool W., Pongput K., Supriyasilp T., Sakolnakhon K. P., Vonnarart O. (2013) Hydrological Evaluation with SWAT Model and NumericalWeather Prediction for Flash FloodWarning System in Thailand, Journal of Earth Science and Engineering, 3 (6), 349.
  • Yadi S., Suhendro B., Priyosulistyo H., Aminullah A. (2019) Dynamic response of long-span bridges subjected to nonuniform excitation: a state-of-the-art review, MATEC Web of Conferences, Vol. 258, p. 05017, EDP Sciences.
  • Yan L., Xiong L., Guo S., Xu C. Y., Xia J., Du T. (2017) Comparison of four nonstationary hydrologic design methods for changing environment, Journal of Hydrology, 551, 132–150.
  • Zaid M., Yazdanfar Z., Chowdhury H., Alam F. (2019) A review of the methods used to reduce the scouring effect of the bridge pier, Energy Procedia, 160, 45–50.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e0254648-7398-4a2d-9b1c-db90d1891af5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.