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Abstract. A compact Riemann surface X of genus g > 1 which has a conformal automor-
phism ρ of prime order p such that the orbit space X/〈ρ〉 is the Riemann sphere is called
cyclic p-gonal. Exceptional points in the moduli spaceMg of compact Riemann surfaces of
genus g are unique surface classes whose full group of conformal automorphisms acts with a
triangular signature. We study symmetries of exceptional points in the cyclic p-gonal locus
inMg for which Aut(X)/〈ρ〉 is a dihedral group Dn.
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1. INTRODUCTION

A Riemann surface is a connected and compact surface equipped with an analytic
structure. A conformal automorphism of a Riemann surface X of genus g > 1 is a
homeomorphism ρ : X → X which is analytic in local coordinates. The group Aut(X)
of all such automorphisms is called the full automorphism group. By Theorem of
Hurwitz [10], the order of Aut(X) is bounded by 84(g−1), and this bound is attained
for infinitely many values of g as was shown by Macbeath in [14].

A finite groupG is said to act on a Riemann surfaceX if it is a subgroup of Aut(X).
Then there exist a Fuchsian group Λ and an epimorphism θ : Λ→ G whose kernel Γ
is a surface Fuchsian group. In this case X is the orbit space of the hyperbolic plane
H under the action of Γ. We say that θ is a smooth epimorphism and that G acts with
the signature σ(Λ) associated with Λ. Such a signature determines an algebraic and
geometric structure of Λ. Two actions of finite groups G and G′ on X are conformally
equivalent if G and G′ are conjugate in Aut(X).

A Riemann surface X of genus g > 1 which can be realized as a p-sheeted covering
of the Riemann sphere for some prime p is called p-gonal. If there is an automorphism
ρ of order p which permutes the sheets, then X is cyclic p-gonal. The Castelnuevo
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and Severi theorem [6] asserts that for g > (p − 1)2 the group generated by such an
automorphism is unique in Aut(X) as was mentioned by Accola in [2]. The subgroup
〈ρ〉 is called a p-gonality subgroup.

Topological classification of conformal actions on a cyclic p-gonal Riemann surface
X of genus g > (p− 1)2 is given in [20], where six types of actions are distinguished
according to if the spherical group Aut(X)/〈ρ〉 is trivial, ZN , DN/2, A4, S4 or A5
(N is the index of 〈ρ〉 in G). When Aut(X) acts with a triangular signature and
Aut(X)/〈ρ〉 is a dihedral group Dn we say that the action of Aut(X) is triangular
(Dn)-action, and in this case we denote the surface X by Xp,n,g. For example, the
surface Xp,n,g for p = 2 and n = 2g + 2 is the well known Accola-Maclachlan surface
whose automorphism group has order 8(g + 1). This number is the least value of the
size of the automorphism group of a Riemann surface of genus g > 1 on condition
that the group is nontrivial. It was found independently by Colin Maclachlan in [15]
and Robert Accola in [1]. The first author constructed a smooth epimorphism from
a triangle Fuchsian group with periods 2, 4 and 2g + 2 onto a finite group G of order
8(g + 1). The orbit space of the hyperbolic plane under the action of the kernel
of the epimorphism is a Riemann surface on which G acts as the automorphism
group. In [19] David Singerman showed that this surface is a two-sheeted cover of
the sphere branched over the vertices of a regular (2g + 2)-gon. Such a cover was
constructed independently by Accola as an example of a Riemann surface whose
automorphism group consists of 8g+8 automorphisms arising from 4g+4 symmetries
of the polygon. Singerman proved that the Accola-Maclachlan surface is platonic,
hyperelliptic and symmetric, and he calculated the number of all its symmetries. By
a slight modification of Maclachlan’s construction we can find a surface Xp,n,g for
p > 2, g ≡ 0 (p−1

2 ) and n = 2 + 2g/(p − 1) which is a p-sheeted cover of the sphere
branched over the vertices of a regular n-gon. This allows us to enlarge the notion of
an Accola-Maclachlan surface to a cyclic p-gonal Accola-Maclachlan surface for any
prime p ≥ 2. In this case n is the number of fixed points of a p-gonal automorphism.
A cyclic p-gonal Accola-Maclachlan surface will be denoted by AMp,g. We prove that
the automorphism group of Xp,n,g has order 8(g + 1) if and only if Xp,n,g is AM2,g
or AMp,p−1 for p > 2.

A symmetry of a Riemann surface is an antiholomorphic involution; a surface is
symmetric if it admits a symmetry. It is known that projective complex algebraic
curves correspond to compact Riemann surfaces. Under this correspondence, the fact
that a surface X is symmetric means that the corresponding curve is definable over
R. In the group of conformal and anticonformal automorphisms of X, nonconjugate
symmetries correspond bijectively to real curves which are nonisomorphic (over R),
and whose complexifications are birationally equivalent to X. If X has genus g, and
δ is a symmetry of X, then the set of fixed points Fix(δ) of δ consists of k disjoint
Jordan curves called ovals, where 0 ≤ k ≤ g + 1, by a theorem of Harnack [9].

Exceptional points in the moduli spaceMg of compact Riemann surfaces of genus
g are unique surface classes whose full group of conformal automorphisms acts with a
triangular signature. Their defining equations as algebraic curves have coefficients in
a number field [3]. Determining the exceptional points inMg is not a simple matter.
Although there are just finitely many possible triangular signatures satisfying the
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Riemann-Hurwitz relation in genus g, not all of them correspond to a group action.
Furthermore, several distinct groups may act with the same signature, or one group
may have topologically distinct actions with the same signature. So the problem
can be attacked piecemeal by restricting attention to certain subloci in Mg. The
q-hyperelliptic locusMq

g ⊆Mg consists of surfaces admitting a conformal involution
(the q-hyperelliptic involution), with a quotient surface of genus q. When q = 0, these
are the classical hyperelliptic surfaces. When q = 1, these are the elliptic-hyperelliptic
surfaces. Exceptional points in hyperelliptic locus and elliptic-hyperelliptic locus were
studied in [22] and [21], respectively. In order to determine the cyclic p-gonal locus
inMg we must consider six types of conformal actions on p-gonal Riemann surfaces.
In the paper we deal only with (Dn)-actions, the remaining will be studied later.
By a result of Singerman characterizing symmetric exceptional points [16], Xp,n,g is
symmetric. We give a presentation of its full group of conformal and anticonformal
automorphisms. By a formula of Gromadzki [8], we check that a symmetry of Xp,n,g

with fixed points has 1 or p ovals. The case p = 2 corresponds to the hyperelliptic
locus. Symmetry types of hyperelliptic Riemann surfaces and Accola-Maclachlan sur-
faces were studied in [5] and [4], respectively, however we do not omit this case for
completeness of the paper.

We prove that for any prime p > 2 and even q ≥ 2, there exists a symmetric
exceptional point in the cyclic p-gonal locus ofMg with g = (q− 1)(p− 1) admitting
q symmetries, and every symmetry has p ovals.

2. PRELIMINARY

2.1. NEC GROUPS

Every compact Riemann surface X of genus g ≥ 2 can be represented as the orbit
space of the hyperbolic plane H under the action of a discrete, torsion-free group
Γ, called a surface group of genus g, consisting of orientation-preserving isometries
of H, and isomorphic to the fundamental group of X. Any group of conformal and
anticonformal automorphisms of X = H/Γ can be represented as Λ/Γ, where Λ is
a non-euclidean crystallographic (NEC) group containing Γ as a normal subgroup.
An NEC group is a co-compact discrete subgroup of the full group G of isometries
(including those which reverse orientation) of H. Let G+ denote a subgroup of G
consisting of orientation-preserving isometries. An NEC group is called a Fuchsian
group if it is contained in G+, and a proper NEC group otherwise.

Wilkie [23] and Macbeath [12] associated to every NEC group Λ a signature which
determines its algebraic and geometric structure. It has the form

σ(Λ) = (g;±; [m1, . . . ,mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk
)}), (2.1)

where the numbers mi ≥ 2 are called the proper periods, the brackets ( ) (which
may be empty) are called the period cycles, the numbers nij ≥ 2 are called the link
periods, and g ≥ 0 is the orbit genus. An NEC group with a signature of the form
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(g;±; [−]; {(−), . . . , (−)}) is called a surface NEC group of genus g. A Fuchsian group
is an NEC group with a signature of the form

(g; +; [m1, . . . ,mr]; {−}). (2.2)

In the particular case g = 0 we shall write briefly [m1, . . . ,mr]. A group with a
signature [m1,m2,m3] is called a triangle group, and the signature is called triangular.
If Λ is a proper NEC group with the signature (2.1), its canonical Fuchsian subgroup
Λ+ = Λ ∩ G+ has the signature

(γ; +; [m1,m1, . . . ,mr,mr, n11, . . . n1s1 , . . . , nk1, . . . , nksk
]; {−}), (2.3)

where γ = αg+k− 1 and α = 2 if the sign is + and α = 1 otherwise. In the paper we
shall use only NEC groups with the signature (2.1) where the sign is +. In this case
the group has a presentation given by generators:

(i) xi, i = 1, . . . , r, (elliptic generators)
(ii) cij , i = 1, . . . , k; j = 0, . . . si, (reflection generators)
(iii) ei, i = 1, . . . , k, (boundary generators)
(iv) ai, bi, i = 1, . . . g if the sign is +, (hyperbolic generators)

and relations

(1) xmi
i = 1, i = 1, . . . , r,

(2) cisi
= e−1

i ci0ei, i = 1, . . . , k,
(3) c2

ij−1 = c2
ij = (cij−1cij)nij = 1, i = 1, . . . , k; j = 1, . . . , si,

(4) x1 . . . xre1 . . . eka1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g = 1.

Any system of generators of an NEC group satisfying the above relations will be
called a canonical system of generators.

Every NEC group has a fundamental region, whose hyperbolic area is given by

µ(Λ) = 2π
(
αg + k − 2 +

r∑
i=1

(1− 1/mi) + 1/2
k∑
i=1

si∑
i=1

(1− 1/nij)
)
, (2.4)

where α is defined as in (2.3). It is known that an abstract group with the presentation
given by the generators (i)–(iv) and the relations (1)–(4) can be realized as an NEC
group with the signature (2.1) if and only if the right-hand side of (2.4) is positive.
If Γ is a subgroup of finite index in an NEC group Λ then it is an NEC group itself
and the Riemann-Hurwitz relation is

[Λ : Γ] = µ(Γ)/µ(Λ). (2.5)

The number of fixed points of an automorphism of a Riemann surface can be calcu-
lated by Macbeath’s theorem [13].
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Theorem 2.1. Let X = H/Γ be a Riemann surface with the automorphism group
G = Λ/Γ and let x1, . . . , xr be elliptic canonical generators of Λ with periods
m1, . . . ,mr, respectively. Let θ : Λ → G be the canonical epimorphism and for
1 6= g ∈ G let εi(g) be 1 or 0 according as g is or is not conjugate to a power of
θ(xi). Then the number F (g) of points of X fixed by g is given by the formula

F (g) = |NG(〈g〉)|
r∑
i=1

εi(g)/mi, (2.6)

where NG(〈g〉) denotes the normalizer in G of the subgroup 〈g〉.

2.2. SYMMETRIES OF BELYI SURFACES

The famous theorem of Belyi states that a compact Riemann surface X can be defined
over the number field if and only if X can be uniformized by a finite index subgroup
Γ of a Fuchsian triangle group Λ. As a result nowadays such surfaces are called
Belyi surfaces. The existence of a symmetry on X means that Λ is the canonical
Fuchsian group of a proper NEC group Λ̃, containing Λ with index 2, and containing
Γ as a normal subgroup. By (2.3), there are two possibilities for the signature of
Λ̃: (0; +; [−]; (k, l,m)), and, if k = l, (0; +; [k]; {(m)}). We shall call X a symmetric
surface of the first type or of the second type respectively.

Let A ∼= Λ̃/Γ be the full group of automorphisms (conformal and anticonformal)
of X, let θ̃ be the canonical epimorphism Λ̃ → A with kernel Γ. A symmetry φ ∈ A
is the image under θ̃ of an element d from the subset Λ̃ \ Λ of orientation-reversing
elements of Λ̃. If d cannot be chosen as a reflection then φ has no ovals. Otherwise, d
is conjugate to one of the reflection generators in the canonical system of generators
of Λ̃. The number of ovals ‖φ‖ is the number of empty period cycles in the group
Γ̃ = θ̃−1(〈φ〉). A formula for ‖φ‖ is given in [8] in terms of orders of centralizers:

‖φ‖ =
∑
|C(A, θ̃(ci))|/|θ̃(C(Λ̃, ci))|, (2.7)

where ci runs over pairwise non-conjugate canonical reflection generators in Λ̃ whose
images are conjugate to φ, and C(A, a) denotes the centralizer of the element a in
the group A. In [17] (see also [16]) it is proved that the centralizer of a reflection c in
an NEC group Λ̃ is isomorphic to Z2 ⊕Z if the associated period cycle in Λ̃ is empty
or consists of odd periods only; otherwise it is isomorphic to Z2 ⊕ (Z ∗ Z), where ∗
denotes the free product.

Using these results we obtain the following classification of the centralizers of
reflections in an NEC group whose canonical Fuchsian group is a triangle group. The
notation c1 ∼ c2 denotes conjugacy in Λ̃.
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Lemma 2.2. (a) Let Λ̃ be an NEC group with signature (0; +; [−]; (k′, l′,m′)) and let
c0, c1, c2 be the canonical system of generators of Λ̃. Then

(i) for k′ = 2k, l′ = 2l,m′ = 2m
C(Λ̃, c0) = 〈c0〉 ⊕ (〈(c0c1)k〉 ∗ 〈(c0c2)m〉),
C(Λ̃, c1) = 〈c1〉 ⊕ (〈(c0c1)k〉 ∗ 〈(c1c2)l〉),
C(Λ̃, c2) = 〈c2〉 ⊕ (〈(c0c2)m〉 ∗ 〈(c1c2)l〉);

(ii) for k′ = 2k, l′ = 2l + 1,m′ = 2m, c1 ∼ c2 and
C(Λ̃, c0) = 〈c0〉 ⊕ (〈(c0c1)k〉 ∗ 〈(c2c0)m〉),
C(Λ̃, c1) = 〈c1〉 ⊕ (〈(c1c0)k〉 ∗ 〈(c2c1)l(c2c0)m(c1c2)l〉).

(b) Let Λ̃ be an NEC group with signature (0; +; [k]; {(m)}) and let x, e, c0, c1 be a
canonical system of generators of Λ̃. Then c0 ∼ c1 and

C(Λ̃, c0) =
{
〈c0〉 ⊕ 〈(c0c1)m/2〉 ∗ 〈e(c0c1)m/2e−1〉 if m is even,
〈c0〉 ⊕ (〈e(c0c1)(m−1)/2〉) if m is odd.

3. TRIANGULAR (Dn)-ACTIONS
ON CYCLIC p-GONAL RIEMANN SURFACES

Let G be a finite group acting on a Riemann surface of genus g > 1 such that the
canonical projection X → X/G is ramified at r points with multiplicities m1, . . . ,mr

and the genus of X/G is zero. Then the vector of numbers (m1, . . . ,mr) is called
the branching data of G on X. A sequence (g1, . . . , gr) of generators of G such that
gmi
i = 1 for i = 1, . . . , r, g1g2 . . . gr = 1 and 2g − 2 = |G|(r − 2 − 1

m1
− . . . − 1

mr
) is

called a generating (m1, . . . ,mr)-vector.
A cyclic p-gonal Riemann surface of genus g > (p−1)2 for which the action of the

automorphism group is a triangular (Dn)-action is denoted by Xp,n,g. Finite group
actions on such surfaces are determined by cases (C.e)− (C.h) of Theorem 3.7 in [20]
for p > 2. For the convenience of the reader we repeat the arguments from the proof of
this Theorem because we shall need them later in the paper, and we explain why the
cases (C.a)− (C.d) must be excluded if we restrict ourselves to triangular signatures.

Theorem 3.1. Let (p, n, g) be a triple of integers such that g, n > 1, and p is a prime.
Then there exists a surface Xp,n,g if and only if g = [n(1+a3)/2+a2−1](p−1) for some
a2, a3 ∈ {0, 1}, and n satisfies the condition in the last column of Table 1. An action
of the full automorphism group of Xp,n,g is given by a presentation (a) − (f) listed
below and (2p, nε2, 2ε3)-generating vector vrG = (Rr, SR1−r, (RS)−1), where r = 1 in
all cases but (a) and (f), r is an odd integer different from p in range 1 ≤ r ≤ 2p− 1
in two exceptional cases, r 6= 1 in (f), n ≡ 0 (p) in (a) for r 6= 1, and εi = 1 or p
according to if ai = 0 or 1 for i = 2, 3.
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Table 1.

Case (a2, a3) Presentation of Aut(Xp,n,g) Conditions

(a) (0, 1) An1,p = 〈R,S : R2p, Sn, (RS)2R−2〉 none
(b) (1, 1) Bnp,p = 〈R,S : R4, SnR−2, (RS)2R−2〉 p = 2
(c) (0, 0) Cn1,1 = 〈R,S : R2p, Sn, (RS)2, SR2S−1R−2〉 n ≡ 0 (p)
(d) (0, 0) Dn

1,1 = 〈R,S : R2p, Sn, (RS)2, SR2S−1R2〉 n ≡ 0 (2),p > 2
(e) (1, 0) En,δp,1 = 〈R,S : R2p, (RS)2, SnR−2δ〉 2δ + n ≡ 0 (p)

g.c.d.(δ, p) = 1
(f) (1, 1) Fnp,p = 〈R,S : R2p, Sn, (RS)2R−2〉 p > 2, n 6≡ 0 (p)

Proof. Assume that the action of a finite group G on a p-gonal Riemann surface X
of genus g > 1 is a triangular (Dn)-action. Then there exist a Fuchsian group Λ
and an epimorphism θ : Λ→ G with a surface kernel Γ of orbit genus g. In this case
X = H/Γ, and by Lemma 3.1 in [20], σ(Λ) = [ε12, ε2n, ε32] for some εi ∈ {1, p}, where
at least one of εi is equal to p. Since θ preserves the orders of canonical generators
of Λ, it follows that G is generated by two elements R = θ(x1) and S = θ(x2) of
orders 2ε1, and nε2 respectively whose product has order 2ε3. First suppose that
ε1 = p. Then the only p-gonality subgroup H ≤ G is generated by R2. Since H is
a normal subgroup, it follows that SR2S−1 = R2α, Sn = R2δ and (RS)2 = R2γ for
some integers α, δ, γ ∈ {0, . . . , p− 1}, where δ and γ are zero if and only if ε2 = 1 and
ε3 = 1 respectively. By the equations R2 = (RS)2R2(RS)−2 = R2α2 , α2 ≡ 1 (p) and
so α = 1 or α = −1.

If ε3 = p then γ 6= 0 and α = 1. Since (RS)2 = R2γ , it follows that RSR−1 =
S−1R2(γ−1). By raising the last equation to the n-th power we get S2n = R2n(γ−1)

and so R2(2δ+n(1−γ)) = 1. Thus

2δ + n(1− γ) ≡ 0 (p). (3.1)

For p = 2, γ = 1 and G has the presentation (a) or (b) according to if ε2 = 1 or p. So
assume that p > 2. If γ = 1 then δ = 0 and G has the presentation (a). Otherwise,
let ε = (1− r)(p+ 1)/2 for an integer r such that rγ ≡ 1 (p). Then by (3.1),

2(rδ − εn) ≡ 0 (p). (3.2)

Let h = (RS)2, R′ = Rhε and S′ = Sh−ε. Then hr = (RS)2r = R2rγ = R2 and so
R′2 = R2h1−r = h = (R′S′)2. Furthermore, by (3.2), S′n = Snh−εn = R2δh−εn =
hrδ−εn = 1. Thus, G has the presentation 〈S′, R′ : R′2p = 1, S′n = 1, (R′S′)2 = R′2〉.
By the last relation, R′S′R′−1 = S′−1 and so R′S′kR′−1 = S′−k for any integer k.
Since R = R′r and S = S′R′1−r if r is odd, and R = R′p+r and S = S′R′1−(p+r) if
r is even, we can assume that a generating vector (θ(x1), θ(x2), θ(x3)) of G has the
form (R′r, S′R′1−r, (R′S′)−1) for some odd r different from p in the range 1 ≤ r < 2p.
In the proof of Lemma 3.4 [20], it was justified that any two such generating vectors
corresponding to different values of r are not equivalent. By (3.2), δ ≡ γεn (p). Thus,
ε2 = 1 if n ≡ 0 (p) and ε2 = p otherwise.
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If ε3 = 1, then G = 〈R,S : R2p = 1, Sn = R2δ, (RS)2 = 1, SR2S−1 = R2α〉. Thus,
for ε2 = 1, G has the presentation (c) or (d) according to α = 1 or −1, and for ε2 = p
it has the presentation (e). Since (RS)2 = 1, it follows that RSR−1 = S−1R−2. So
if α = 1, then for any integer k, RSk = S−kR1−2k. In particular, for k = n, 1 =
S2nR2n = R2(2δ+n), and so 2δ + n ≡ 0 (p). If α = −1 then RS2R−1 = (S−1R−2)2 =
S−2. Thus, RS2kR−1 = S−2k and RS2k+1R−1 = S−(2k+1)R−2 for any integer k.
Similarly, SR2kS−1 = R−2k and SR2k+1S−1 = R−(2k+1)S−2. If n is odd, then for
k = (n−1)/2, the relation RS2k+1R−1 = S−(2k+1)R−2 gives R2 = 1, a contradiction.
Thus n must be even.

For ε1 = 1, then there is only one triple of parameters (ε1, ε2, ε3) for which the
action of G is not equivalent to any action discussed above. In this case (ε1, ε2, ε3) =
(1, p, 1), and G is the dihedral group Dnp.

In all cases there is an exact sequence of homomorphisms 1→ H → G→ Dn → 1
for the unique p-gonality subgroup H ≤ G and so G has order 2pn. Moreover, G is
the full automorphism group of X by Theorem 4.1 in [20]. The p-gonality subgroup
H is isomorphic to ∆/Γ for some Fuchsian subgroup ∆ < Λ containing Γ as a normal
subgroup of index p. By (2.5), ∆ has the signature [p, t. . ., p] for t = 2 + 2g/(p − 1).
On the other hand, t is the number of fixed points of R2 which by (2.6) is equal to
2pn(a1/2ε1 +a2/nε2 +a3/2ε3), where ai = 1 or ai = 0 according to if εi = p or εi = 1.
Thus, g = [n(a1 + a3)/2 + a2 − 1](p − 1). Since g = 0 for (ε1, ε2, ε3) = (1, p, 1), the
signature [2, np, 2] must be ruled out and so we can assume that a1 = 1.

Conversely, if (p, n, g) is a triple of integers such that p is prime, g = [n(1+a3)/2+
a2 − 1](p − 1) > 1 for some a2, a3 ∈ {0, 1} and n satisfies the condition in the last
column of Table 1, then there exist a triangular (Dn)-action determined by a Fuchsian
group Λ with the signature [2p, nε2, 2ε3], where εi = 1 or p according to ai = 0 or
1, the group G with the presentation given in Table 1 corresponding to (a2, a3), and
the generating vector vrG. Indeed, vrG defines an epimorphism θ : Λ → G such that
Γ = kerθ is a surface Fuchsian group of orbit genus g, and H = 〈R2〉 is a p-gonality
subgroup of G with the quotient G/〈R2〉 = Dn.

Corollary 3.2. Let G = 〈R,S〉 be a group with a presentation (a)–(f) listed in Table 1.
Then for any integer k

RSk = S−kR in (a), (b) and(f), (3.3)

RSk = S−kR1−2k in (c) and (e), (3.4)

RS2k = S−2kR, RS2k+1 = S−(2k+1)R−1,
SR2k = R−2kS, SR2k+1 = R−(2k+1)S−1 in (d). (3.5)

Corollary 3.3. In cases (c) and (d), Xp,n,g is a p-sheeted cover of the sphere ramified
over the vertices of a regular n-gon, and in (e) Xp,n,g is the cover of the sphere
branched over n vertices of the dihedron and two points in the poles of the sphere.

Proof. We use the same notation as in the proof of Theorem 3.1. In cases (c), (d) and
(e) the normal subgroup ∆ ≤ Λ corresponds to a regular map of type {ε2n, 2p} on
the sphere. The action of R on the H-cosets is a product of n two-cycles and the
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action of S is a product of 2 n-cycles. Thus, the map must be a dihedron since it has
n vertices of valency 2 and 2 faces of valency n. In (c) and (d), Xp,n,g is a p-sheeted
cover of the sphere with n branched points being the vertices of the dihedron, and in
(e) the cover is branched over two additional points in the poles of the sphere coming
from period ε2n in the signature of Λ.

The surface Xp,n,g whose automorphism group has presentation (c) or (d) is called
a p-gonal Accola-Maclachlan surface, and is denoted by AMp,g.

Corollary 3.4. Let G = Aut(Xp,n,g). Then for p = 2, n = 1 + g, g, 2g + 2 or 2g and
G = A1+g

1,2 , B
g
2,2, C

2+2g
1,1 or E2g,1

2,1 respectively. For p > 2, g ≡ 0 (p−1
2 ) and the pair

(n,G) is one of those listed below:

n G Conditions
1 + g

p−1 An1,p any
2 + 2g

p−1 Cn1,1 n ≡ 0 (p)
2 + 2g

p−1 Dn
1,1 n ≡ 0 (2)

2g
p−1 En,δp,1 2δ + n ≡ 0 (p)
g
p−1 Fnp,p n 6≡ 0 (p)

Furthermore, the order of G has the minimum size 8(g + 1) if and only if Xp,n,g is
AM2,g and G = C2+2g

1,1 , or Xp,n,g is AMp,p−1 for p > 2 and G = D4
1,1 or C4

1,1.

Proof. The first part is obvious and we justify only the second one. Since

g = [n(1 + a3)/2 + a2 − 1](p− 1)

for some a2, a3 ∈ {0, 1} and |G| = 2pn, it follows that the equation 8(g + 1) = |G| is
only satisfied for (a2, a3, n) = (0, 0, 2g + 2) if p = 2, and (0, 0, 4) if p > 2. In the first
case Xp,n,g is the surface AM2,g with the automorphism group G = C2g+2

1,1 , in the
other Xp,n,g is a surface AMp,p−1 with G = D4

1,1 or C4
1,1.

In the next section we shall need the following lemma.

Lemma 3.5. Assume that G = 〈R,S〉 is a group with a presentation (a) − (f) in
Table 1. Then there are 2 or 4 pairs of integers (α, β) in range 0 ≤ α < n and
0 ≤ β < 2p such that S2αR2β = 1 according to if n is odd or even. In the first case
(α, β) = (0, ip), and in the other (α, β) = (0, ip) or (n2 , ip − δ), where i = 0, 1 and
δ = 0 in (a), (c), (d), (f), δ = 1 in (b), and δ is an integer co-prime with p such that
2δ + n ≡ 0 (p) in (e).

4. TRIANGULAR SYMMETRIC (Dn)-ACTIONS

In this chapter we study the existence of symmetries of a Riemann surface whose full
group of conformal automorphisms has a triangular (Dn)-action. G. Jones, D. Singer-
man and P. Watson in [11] gave the necessary and sufficient conditions on the existence
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of a symmetry of a quasiplatonic Riemann surface. Since, we deal only with full au-
tomorphism groups we shall use the following simpler version of their theorem which
is close to the original in [16].

Theorem 4.1. Let X be a quasiplatonic Riemann surface, uniformised by a normal
subgroup Γ of finite index in a co-compact triangle group Λ, and let g1, g2 and g3 be
the images in G = Λ/Γ of a canonical generating triple x1, x2, x3 for Λ. Then X is
symmetric if and only if either

1. G has an automorphism α : g1 7→ g−1
1 , g2 7→ g−1

2 or
2. G has an automorphism β : g1 7→ g−1

2 , g2 7→ g−1
1 (possibly after a cyclic permuta-

tion of the canonical generators).

We shall call the action of G a triangular symmetric action of the first type or of
the second type according to if the case (1) or (2) holds. In the particular case when
G acts on Xp,n,g we shall write XI

p,n,g or XII
p,n,g respectively.

Theorem 4.2. The topological type of symmetric action on XI
p,n,g is determined by

a finite group G = An1,p, Bnp,p, Cn1,1, Dn
1,1, E

n,δ
p,1 or Fnp,p, a Fuchsian group Λ with the

signature [2p, nε2, 2ε3] and a generating vector vrG, where the presentation of G and vrG
are given in Theorem 3.1, and ε2, ε3 are the lower indices in the symbol of the group
G. The full group A of conformal and anticonformal automorphisms of Xp,n,g is a
semidirect product Go 〈T : T 2〉 with respect to the action TRT = R−1, TST = S−1,
where T is a symmetry of X.

Proof. Suppose that G = Λ/Γ is the full automorphism group of a symmetric surface
XI
p,n,g = H/Γ. Then Λ has a signature σ(Λ) = [2p, ε2n, ε32] for some ε2, ε3 ∈ {1, p}

and there exists an NEC group Λ̃ with the signature (0; +; [−]; {(2p, ε2n, ε32)}) con-
taining Λ as a subgroup of index 2 and Γ as a normal subgroup. Let c0, c1 and c2 be
a system of canonical generators of Λ̃. Then x1 = c0c1, x2 = c1c2 and x3 = c2c0 can
be chosen as a system of canonical generators of Λ. Let g1, g2 and T be the images
of x1, x2 and c1 in A = Λ̃/Γ. Since c1x1c1 = x−1

1 and c1x2c1 = x−1
2 , it follows that

A is a semidirect product G o 〈T : T 2〉 with respect to the action Tg1T = g−1
1 and

Tg2T = g−1
2 , where T is a symmetry of X. By Theorem 3.1, G is generated by two

elements R and S which satisfy the relations given in Table 1. It is easy to check that
in each case (a), . . . , (f), the assignment R 7→ R−1, S 7→ S−1 induces an isomorphism
of G, and so the action of G is a symmetric triangular action of the first type.

Lemma 4.3. Let vrG = (Rr, SR1−r, (RS)−1) be a generating vector of the group G
with a presentation (a), . . . , (f) listed in Table 1, and let A be the semidirect product
G o 〈T : T 2〉 with respect to the action TRT = R−1, TST = S−1. For a ∈ A, let ta
denote the order of the centralizer of a in A. Then tRrT = 4n, tT = 8 or 4 according
to n even or odd. For p > 2, in all cases but (d) tTSR1−r = 8 or 4 according to n
even or odd, and in the exceptional case tTSR1−r = 8p. For p = 2, tTSR1−r = 8 in (e),
16 in (c), and 8 or 4 in (a), (b) according to n even or odd.

Proof. Any element g ∈ A can be written in the form g = SkRlTm for a unique triple
of integers (k, l,m) in the range 0 ≤ k ≤ n− 1, 0 ≤ l ≤ 2p− 1 and m = 0, 1. If m = 0,
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then by the relations listed in Corollary 3.2, the equation gRrTg−1 = RrT can be
transformed into R2l = 1 in cases (a), (b), (f), R2(l−k) = 1 in (c), (e), and R2l = 1
or R−2(l+1) in (d) according to k even or odd. If m = 1 then we get the equation
R2(l−r) = 1 in (a), (b), (f), R2(l−k−1) = 1 in (c), (e), and R2(l−1) = 1 or R−2l = 1 in
(d) according to k even or odd. Thus tRrT is the number of triples:

(a), (b), (f) : (k, ip, 0), (k, r + ip, 1),
(c), (e): (k, k + ip, 0), (k, k + 1 + ip, 1),
(d) : (2t, ip, 0), (2t+ 1, ip− 1, 0), (2t, ip+ 1, 1), (2t+ 1, ip, 1),

for i = 0, 1, k = 0, . . . , n− 1, t = 0, . . . , n2 − 1, and so tRrT = 4n.
The equation gTg−1T = 1 can be transformed into R(−1)k2lS2k = 1 in (d) and

S2kR2l = 1 in other cases. Thus, by Lemma 3.5, tT = 4 or 8 according to n odd or
even.

Finally, by the equation g(TSR1−r)g−1(TSR1−r)−1 = 1 we get

SkRlS−1RlSk+1 = 1 or SkRlSRlSk+1R2(1−r) = 1

according to is m = 0 or 1. If l is even, then by Corollary 3.2, in all cases but (d)
we get R2lS2k = 1 or R2(l+1−r)S2(k+1) = 1, and S2k = 1 or S2(k+1) = 1 in the
exceptional case. For l odd, we get R2lS2(k+1) = 1 or R2(l+1−r)S2k = 1 in (a), (b),
(f), R2(l+1)S2(k+1) = 1 or R2(l−1)S2k = 1 in (c), (e), and S2(k+1) = 1 or S2k = 1 in
(d). By Lemma 3.5, it is easy to determine all possible triples (k, l,m) for which the
above equations are satisfied, and the number of such triples is equal to the order of
TSR1−r.

Theorem 4.4. There are two or three conjugacy classes of symmetries with fixed
points of a surface XI

p,n,g according to n odd or even. Let us denote the number of
their ovals by (k1, k2) (if n is odd) and (l1, l2, l3) if n is even. Then for p > 2, in
all cases but (d) (k1, k2) = (1, 1) and (l1, l2, l3) = (1, 1, 1), in the exceptional case
(l1, l2, l3) = (1, 1, 1) or (1, 1, p) according to n ≡ 2 (4) or n ≡ 0 (4). For p = 2 and odd
n, (k1, k2) = (g + 1, 1) in (a) and (g, 2) in (b). For even n: (l1, l2, l3) = (g + 1, 1, 1)
in (a), (g, 2, 2) in (b), (g, 2, 1) in (e), and (g + 1, 1, 1) or (g + 1, 1, 2) in (c) according
to n ≡ 2 (4) or n ≡ 0 (4).

Proof. Assume that G = Λ/Γ is one of the groups listed in Theorem 4.2 which acts
on XI

p,n,g = H/Γ with the signature σ(Λ) = [2p, ε2n, ε32] for ε2, ε3 ∈ {1, p}. Then
the group A of conformal and anticonformal automorphisms of XI

p,n,g is a semidirect
product G o Z2 = 〈R,S〉 o 〈T 〉 with respect to the action TRT = R−1 and TST =
S−1, where T is a symmetry of Xp,n,g. Let Λ̃ be a NEC group with the signature
(0; +; [−]; {(2p, ε2n, ε32)}) containing Λ and Γ as normal subgroups. Then Γ is the
kernel of an epimorphism θ̃ : Λ̃→ A defined by θ̃(c0) = RrT , θ̃(c1) = T and θ̃(c2) =
TSR1−r, where r = 1 in all cases but (a) and (f), r is an odd integer different from
p in range 1 ≤ r < 2p in two exceptional cases, r 6= 1 in (f), and n ≡ 0 (p) for r 6= 1
in (a). A symmetry of X is a θ̃-image of order 2 of a reversing orientation element
λ̃ ∈ Λ̃, and it has fixed points if and only if λ̃ is conjugate to a reflection generator
of Λ̃. For even n, the elements RrT, T and TSR1−r are not pairwise conjugate, and for
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odd n, T is conjugate to TSR1−r via S n−1
2 R

r−1
2 in (a), (c), (f), and via S n−1

2 R−δ in
(b), (e). Thus, there are three or two conjugacy classes of symmetries with fixed points
according to n even or odd. The number of ovals of a symmetry can be calculated by
(2.7). The orders of centralizers of RrT, T and TSRr−1 are given in Lemma 4.3, so it
suffices to calculate the orders ti of θ̃(C(Λ̃, ci)) for reflection generators ci of Λ̃.

First assume that all periods in the signature of Λ̃ are even. This requires even
n, except case (b) where n can be arbitrary. By Lemma 2.2, ti = 4](gi), where ](gi)
denotes the order of gi for

g0 = Rp(RS)ε3 , g1 = Rp(SR1−r)
nε2

2 and g2 = (RS)ε3(SR1−r)
nε2

2 .

Thus, for p = 2 we have

Case t0 t1 t2
(a) 4 8 8
(b) 4 4 4

(c) 8 8
{

8 if n ≡ 0 (4)
16 if n ≡ 2 (4)

(e) 8 4 8

Next assume that p > 2. Then g0 = Rp+1S for ε3 = 1. Since R2 is central in (c) and
(e), it follows that gn0 = Rn and Rn+2δ respectively, where n ≡ 0 (2p) in the first case
and n+ 2δ ≡ 0 (2p) in the other. In case (d), by relations (3.5) we have

gn0 = ((Rp+1S)2) n
2 = Sn = 1.

Since ε3 = p and R2 is central in cases (a) and (f), it follows that

g0 = Rp+1S(RS)p−1 = Rp+1S(R2)
p−1

2 = S.

So in all cases g0 has order n. Similarly, by using the relations listed in Corollary 3.2
and assumptions on n given in the last column of Table 1, it is easy to check that g1
has order 2.

If ε3 = p, then

g2 = (RS)p(SRr−1)
ε2n

2 = (R2)
p−1

2 RS1+ ε2n
2 R(r−1) ε2n

2 = RpS1+ ε2n
2 R(r−1) ε2n

2 .

Thus,
g2

2 = RS1+ ε2n
2 R−1S1+ ε2n

2 R(r−1)ε2n = 1

by assumptions on r. If ε3 = 1, then g2 = RS1+ nε2
2 . Thus, by (3.4), g2

2 = R−ε2n = 1
in cases (c) and (e). In (d), g2

2 = 1 or R−2 according to n ≡ 0 (4) or n ≡ 2 (4) and so
g2 has order 2 or p respectively.

Summing up, in all cases but (d) with n ≡ 2 (4), t0 = 4n, t1 = 8 and t2 = 8. In
the exceptional case t0 and t1 are as above and t2 = 8p.

Next assume that ε2n is odd. For p = 2 it is possible only in case (a), and for
p > 2 in all cases but (d) on condition that n is odd. By item (ii) of Lemma 2.2,
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there are two conjugacy classes of reflections in Λ̃ represented by c0 and c1 for which
t0 = 4](g0) and t1 = 4](g1), where

g0 = Rp(RS)−ε3 and g1 = Rp(SR1−r)
1−nε2

2 (RS)ε3(SR1−r)
nε2−1

2 .

For p = 2, t0 = t1 = 4. If p > 2 then in (a) and (f):

t0 = 4](Rp[(RS)2]
1−p

2 (RS)−1) = 4](RS−1R−1) = 4n

and
t1 = 4](RpS

1−n
2 [(RS)2]

p−1
2 RS1+ n−1

2 ) = 4](RpS
1−n

2 RpS
n+1

2 ) = 4.
In (c) and (e), n ≡ 0 (p) and n+ 2δ ≡ 0 (p) respectively. Thus, t0 = 4](Rp+1S) =

4n and
g1 = 4](RpS

1−nε2
2 RS

ε2n+1
2 ) = 4](Rp−ε2n) = 4.

Theorem 4.5. A surface XI
p,n,g has k symmetries with ovals, where k = p + pn in

all cases but (d) with p > 2 and (c) with p = 2, and k = pn2 +p+ n
2 in two exceptional

cases. Furthermore, XI
p,n,g has l symmetries without fixed points, where for p > 2 in

all cases but (d), l = p or 0 according to if n is even or odd, and in the exceptional
case l = 1 for n ≡ 2 (4) and l = p for n ≡ 0 (4). If p = 2, then l = 2 or 0 in (a), (e)
according to g odd or even, l = 2 in (b) for any g, l = 1 + g or 3 + g in (c) according
to g even or odd.
Proof. The group A of conformal and anticonformal automorphisms of XI

p,n,g is a
semidirect product Go〈T 〉, where T is a symmetry ofX which acts on generators R,S
of G by TRT = R−1 and TST = S−1. Any element g ∈ A can be identified with the
unique triple of integers (k, l,m) in the range 0 ≤ k ≤ n−1, 0 ≤ l ≤ 2p−1 andm = 0, 1
for which g = SkRlTm. In particular, g is a symmetry if m = 1 and SkRlS−kR−l = 1.
In case (d), by relation (3.5) we get Rl((−1)k−1) = 1 or Rl((−1)k−1)S(−1)l+12k = 1
according to if l is even or odd. Thus there are the following symmetries: S2rR2tT ,
S2r+1T and R2t+1T for r = 0, . . . , n2 − 1, t = 0, . . . , p − 1. In addition, there is p
symmetries: S n

2 R2t+1T if n ≡ 0 (4) or one S n
2 RpT if n ≡ 2 (4).

In all cases but (d), there is pn symmetries SkR2tT for t = 0, . . . , p − 1 and
k = 0, . . . , n−1. By Corollary 3.2, the second power of g = SkRlT with l odd is equal
to S2k in (a), (f) and (b), and to S2kR2k in (c), (e). Thus in (a), and (f) there is p
symmetries of the form R2t+1T if n is odd or 2p symmetries Sin

2 R2t+1T if n is even,
and in (b) there are 4 symmetries SinR2t+1T for i, t = 0, 1. For p > 2, in cases (c)
and (e) we get the same symmetries as in case (a), since n ≡ 0 (p) and 2δ+n ≡ 0 (p)
respectively. If p = 2 in (c) or (e), then S2kR2k = 1 for k = n

2 on condition that
n ≡ 0 (4) or n ≡ 2 (4) respectively, and hence there are 4 or 2 reflections according
to whether this congruence is satisfied or not.

By Theorem 4.4, there are three or two conjugacy classes of symmetries with fixed
points in A according to n odd or even which are represented by RrT, T, TSR1−r or
by RrT, T respectively. The number of elements in a class is the quotient of |A| = 4pn
by the order of the centralizer of a representative of the class given in Lemma 4.3.
Let k be the sum of elements in all classes. Then the number of symmetries without
fixed points is the difference between the number of all symmetries and k.
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Theorem 4.6. The topological type of symmetric action on XII
p,n,g is determined by a

finite group G = 〈R,S〉, a Fuchsian group Λ with the signature [2p, ε2n, ε32] where two
periods are equal and a generating vector vrG = (Rr, SR1−r, (RS)−1). The full group
A of conformal and anticonformal automorphisms of XII

p,n,g is a semidirect product
G o 〈T 〉, where T is a symmetry of XII

p,n,g. The group G, the parameter r and the
action of T on G are listed in Table 2.

Table 2.

G r Action of T Conditions

Bn2,2, An1,p 1 TRT = RS, TST = S−1 ε3 = p

An1,p, Fnp,p −1 TRT = (RS)−1, TST = S−1 ε3 = p

D2p
1,1, B

2
2,2 1 TRT = S−1, TST = R−1 ε2n = 2p

F 2
p,p

p+1
2 TRT = SR−1−p, TST = R−p ε2n = 2p, p ≡ 1 (4)

F 2
p,p

p−1
2 TRT = SR−1−p, TST = R−p ε2n = 2p, p ≡ 3 (4)

Proof. Assume thatG = Λ/Γ is the group of conformal automorphisms of a symmetric
Riemann surface X = H/Γ of the second type, where σ(Λ) = [2p, ε2n, ε32] with two
equal periods. Then there exists a NEC group Λ̃ with the signature

σ1 = (0; +; [2p]; {(ε2n)}) or σ2 = (0; +; [2p]; {(ε32)}) (4.1)

according to whether ε3 = p or 2p = ε2n, which contains Λ as a subgroup with index
2 and Γ as a normal subgroup. Let x, e, c0 and c1 be a system of canonical generators
of Λ̃. If σ(Λ̃) = σ1 then x1 = x, x2 = c0c1 and x3 = c1x

−1c1 can be chosen as a
system of canonical generators of Λ. Let g1, g2, g3 and T be images of x1, x2, x3 and
c1 in the group A = Λ̃/Γ. Then (g1, g2, g3) is a generating vector of G, and A is a
semidirect product G o 〈T 〉, where T is a symmetry of X which acts on generators
of G by Tg1T = g−1

3 and Tg3T = g−1
1 .

By Theorem 3.1, a finite group acting with the signature [2p, nε2, 2p] is one
of the groups An1,p, B

n
2,2, Fnp,p, and its generating vector has the form vrG =

(Rr, SR1−r, (RS)−1) for some odd integer r different from p. The assignment g1 →
g−1

3 and g3 → g−1
1 induces an automorphism of such a group if and only if r = −1 for

G = Fnp,p, r = 1 for G = Bn2,2, and r = 1 or −1 for G = An1,p. Then TST = S−1 and
TRT = RS or (RS)−1 according to whether r = 1 or r = −1 respectively.

If σ(Λ̃) = σ2 then we can chose x1 = x, x2 = c0x
−1c0 and x3 = c0c1 as a system

of canonical generators of Λ. Let g1, g2, g3 and T be images of x1, x2, x3 and c0 in A.
Then (g1, g2, g3) is a generating vector ofG andA is a semidirect productA = Go〈T 〉,
where T is a symmetry of X which acts on generators of G by Tg1T = g−1

2 and
Tg2T = g−1

1 . The assignment g1 7→ g−1
2 and g2 7→ g−1

1 induces an automorphism of a
group G in Table 1 acting with the signature [2p, 2p, ε32] if and only if G = B2

2,2, D
2p
1,1,

F 2
p,p, and r = 1 for two first groups, and r = p+1

2 or r = 1−p
2 for the last, according
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to if p ≡ 1 (4) or p ≡ 3 (4) respectively. Then TRT = S−1 and TST = R−1 for two
first groups, and TRT = SR−p−1 and TST = R−p for the last.

Theorem 4.7. Let A = G o 〈T : T 2〉 be the group of conformal and anticonformal
automorphisms of XII

p,n,g. If G acts with the signature [2p, 2p, ε32] then XII
p,n,g has 2p

symmetries and all of them have 1 oval. If G acts with the signature [2p, ε2n, 2p] then
for any G but An1,p with r = 1, XII

p,n,g has pn symmetries with 1 oval, and if n is
odd then it has p additional symmetries without fixed points. In the exceptional case
XII
p,n,g has n symmetries with 1 or p ovals according to n odd or even, and it has n

symmetries without fixed points for p = 2 or 1 such a symmetry if p > 2 and n is odd.
Proof. If G acts with the signature [2p, ε3n, 2p], then there exists a NEC group Λ̃
with the signature σ1, see (4.1), containing Γ and Λ as normal subgroups. The group
A of conformal and anticonformal automorphisms of XII

p,n,g is the semidirect product
A = G o 〈T 〉, where T is a symmetry of XII

p,n,g which acts on generators of G by
TST = S−1 and TRT = RT or TRT = (RS)−1 according to whether r = 1 or −1.
It is easy to check that Γ is the kernel of an epimorphism θ̃ : Λ̃ → A defined by
θ̃(x) = Rr, θ̃(e) = R−r, θ̃(c0) = SR1−rT and θ̃(c1) = T . Any symmetry with fixed
points is conjugate to T and we can calculate the number of its ovals by formula
(2.7). For, we must find the order of the centralizer C(A, T ). If r = 1 then an element
g = SkRlT j ∈ A commutes with T iff SkRl(RS)−lSk = 1. Thus S2k = 1 or S2k+1 = 1
according to n even or odd. For G = An1,p, (k, l) = (in2 , 2t) in the first case and
(k, l) = (0, 2t) or (n−1

2 , 2t + 1) in the other, where t = 1, . . . , p and i = 0, 1 and so
C(A, T ) has order 4p. For Bn2,2 (k, l) = (0, 2t) and so tT = 4.

If r = −1, then SkRlT j ∈ C(A, T ) on condition that SkRl(RS)lSk = 1. The last
equation can be transformed to R2lS2k = 1 or R2lS2k+1 according to l even or odd.
Thus (k, l) = (in2 , 0) for even n, and (k, l) = (0, 0) or (n−1

2 , p) for odd n. In both cases
the order of C(A, T ) is equal to 4.

Let t0 be the order of θ̃(C(Λ̃, c0)). Then by Lemma 2.2,

t0 = 4]((SR1−r)
ε2n

2 R−r(SR1−r)
ε2n

2 Rr) or t0 = 2](R−r(SR1−r)
ε2n−1

2 )

according to ε2n even or odd. For r = 1 we get t0 = 4 or 4p respectively, and for
r = −1 t0 = 4 for any n.

Thus, by (2.7), a symmetry with fixed points has 1 oval except for the case G =
An1,p with even n and r = 1 at which it has p ovals. The number of all symmetries
with fixed points is the quotient |A|/tT , and we get n such symmetries for G = An1,p
with r = 1, and pn in the remaining cases.

The total number of symmetries is the number of elements SkRlT ∈ A of order
2. Thus for r = 1, k and l satisfy the equation R2l = 1 or S2k+1R2l = 1 according to
l even or odd. In particular, for p = 2, there is 2n symmetries of the form SkR2iT for
k = 0, . . . , n−1, i = 0, 1, and for G = Bn2,2 with odd n, there is 1 additional symmetry
S

n−1
2 R−1T . For p > 2, we have n symmetries of the form SkT for k = 1, . . . , n, and

one more S n−1
2 RpT if n is odd.

For r = −1, we get the equation SkRlS−k(RS)−l = 1. Thus symmetries have the
form SkR2tT and S

ε2n−1
2 R2t+1T if n is odd. Summing up, there are np symmetries
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if n is even, and all of them have fixed points. If n is odd then there are np + p
symmetries and p of them have no fixed points.

If σ(Λ) = [2p, 2p, 2ε3], then there exists a NEC group Λ̃ with the signature σ2
containing Λ and Γ as normal subgroups. The group A of conformal and anticonformal
automorphisms of XII

p,n,g is one of the groups D2p
1,1, B2

2,2 or F 2
p,p and r = 1 for the

two first groups, r = (p + 1)/2 or (p − 1)/2 for the last group. Now Γ is the kernel
of an epimorphism θ̃ : Λ̃ → A defined by θ̃(x) = Rr, θ̃(e) = R−r, θ̃(c0) = T and
θ̃(c1) = T (RS)−1. By Lemma 2.2, the order of θ̃(C(Λ̃, c0)) is equal to

t0 = 4]((RS)−ε3R−1(RS)−ε3R).

Thus, t0 = 4p for ε3 = 1 and t0 = 4 for ε3 = p. In the first case tT = 4p, and tT = 4
in the other. So there is 2p symmetries in the conjugacy class of T and by (2.7), any
of them has one oval. The set of all symmetries consists of 2p elements: SkRkT for
G = D2p

1,1, R2T, T,RST, SR3T for G = B2
2,2, and R2tT, SR2t+1 for G = F 2

p,p, where
t = 0, . . . , p. There is no symmetry without fixed points.

Corollary 4.8. For any prime p > 2 and a ≡ 2 (4), there exists a symmetric Riemann
surface X of the second type of genus g = a(p− 1)/2 such that every symmetry of X
has exactly p ovals.

Proof. By Theorem 3.3, there exists a p-gonal Riemann surface X of genus g =
a(p− 1)/2 with an automorphism group An1,p for n = 1 + a/2. X is symmetric of the
second type, and according to Theorem 4.7, any symmetry of X has p ovals.

Corollary 4.9. For any prime p > 2 and a ≡ 2 (4), there exists a symmetric Riemann
surface of the first type of genus g = a(p − 1)/2 such that any symmetry of X with
fixed points has either 1 or p ovals.

Proof. By Theorem 3.3, there exists a Riemann surface X of genus g = a(p − 1)/2
with an automorphism group Dn

1,1 for n = 2+a. X is symmetric of the first type, and
according to Theorem 4.4, X has three conjugacy classes of symmetries with fixed
points whose numbers of ovals are 1, 1 and p.

Corollary 4.10. A p-gonal Riemann surface of genus g with a symmetric triangular
Dn-action of the automorphism group G admits a symmetry with the maximal number
g + 1 of ovals iff p > 2 and G = A2

1,p or D4
1,1, or p = 2 and G = Ag+1

1,2 or C2g+2
1,1 .

5. EXCEPTIONAL POINTS WITH TRIANGULAR SYMMETRIC
(Dn)-ACTIONS

An exceptional point in the moduli spaceMg of compact Riemann surfaces of genus
g is a unique surface class whose full group of conformal automorphisms acts with a
triangular signature. The cyclic p-gonal locusMp

g ⊆Mg consists of surfaces admitting
a conformal automorphism (a p-gonal automorphism), with the quotient the Riemann
sphere. By results of previous section there are nine non-equivalent symmetric trian-
gular (Dn)-actions on exceptional points inMp

g listed in the next theorem.
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Theorem 5.1. Given prime p > 2, the genus g of an exceptional point X ∈ Mp
g is

equal to ap−1
2 for some integer a ≥ 2. The full group A of conformal and anticonformal

automorphisms of X is a semidirect product G o 〈T : T 2〉, where G is a group listed
in Table 3, and T is a symmetry of X whose action on G is given below. X has k
symmetries with fixed points belonging to one, two or three conjugacy classes, and l
symmetries without fixed points.

Table 3.

Case G TRT TST k l Ovals Conditions

(1) A
1+ a

2
1,p R−1 S−1 p(2 + a

2 ) 0 1, 1 a ≡ 0 (4)
p 1, 1, 1 a ≡ 2 (4)

(2) A
1+ a

2
1,p RS S−1 1 + a

2 1 1 a ≡ 0 (4)
0 p a ≡ 2 (4)

(3) A
1+ a

2
1,p (RS)−1 S−1 p(1 + a

2 ) 0 1 a ≡ 2 (4)
p 1 a ≡ 0 (4)

(4) C2+a
1,1 R−1 S−1 p(3 + a) 0 1, 1 a ≡ 1 (2)

p 1, 1, 1 a ≡ 0 (2)
(5) D2+a

1,1 R−1 S−1 p(2 + a
2 ) + 1 + a

2 p 1, 1, p a ≡ 2 (4)
1 1, 1, 1 a ≡ 0 (4)

(6) D2+a
1,1 S−1 R−1 2 + a 0 1 a = 2p− 2

(7) Eap,1 R−1 S−1 p(a+ 1) 0 1, 1 a ≡ 1 (2)
p 1, 1, 1 a ≡ 0 (2)

(8) F
a
2
p,p (RS)−1 S−1 pa2 0 1 a ≡ 0 (4)

p 1 a ≡ 2 (4)
(9) F

a
2
p,p SR−p−1 R−p 2p 0 1 a = 4

By observing the action (2) in Table 3 we get the following corollary.

Corollary 5.2. For any prime p > 2 and even q ≥ 2, there exists a symmetric
exceptional point of the second type in Mp

g, g = (q − 1)(p − 1), which admits q
symmetries, and every symmetry has p ovals.

Corollary 5.3. For any prime p > 2 and even q ≥ 4, there exists a symmetric
exceptional point of the second type in Mp

g, g = (q − 2)(p − 1), which admits q
symmetries: one without fixed points and others with one oval.

Theorem 5.4. There are seven non-equivalent symmetric triangular (Dn)-actions
of a finite group G on exceptional points X ∈ M2

g. The full group of conformal and
anticonformal automorphisms of X is a semidirect product Go 〈T : T 2〉, where T is
a symmetry of X whose action on G is given in Table 4.
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Table 4.

Case G TRT TST k l Ovals Conditions
(1) A1+g

1,2 R−1 S−1 2g + 4 2 g + 1, 1, 1 g ≡ 1 (2)
2g + 4 0 g + 1, 1 g ≡ 0 (2)

(2) A1+g
1,2 RS S−1 1 + g 1 + g 2 g ≡ 1 (2)

1 + g 1 + g 1 g ≡ 0 (2)
(3) Bg2,2 R−1 S−1 2g + 2 2 g, 2 g ≡ 1 (2)

2g + 2 2 g, 2, 2 g ≡ 0 (2)
(4) Bg2,2 RS S−1 g g 2 any
(5) Bg2,2 S−1 R−1 4 0 1 g = 2
(6) C2+2g

1,1 R−1 S−1 3g + 5 g + 1 g + 1, 1, 1 g ≡ 0 (2)
3g + 5 g + 3 g + 1, 1, 2 g ≡ 1 (2)

(7) E2g,1
2,1 R−1 S−1 4g + 2 0 g, 2, 1 g ≡ 0 (2)

4g + 2 2 g, 2, 1 g ≡ 1 (2)

Corollary 5.5. For any prime p, there exists a symmetric AMp,g whose automor-
phism group has order 8(g+1) and which admits g+1 symmetries without fixed points.
The remaining symmetries of X split into 3 conjugacy classes admitting 2, g+ 1 and
2(g + 1) elements whose number of ovals is g + 1, 1 and 1, respectively.

Proof. For p = 2 we need to take the symmetric action (6) in Table 4 of the group
C2+2g

1,1 on the Accola-Maclachlan surface of even genus g, and for p > 2 we can take
the symmetric action (5) in Table 3 of the group D4

1,1 on AMp,g of genus g = p−1.
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