PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

State of the art review on air quality monitoring

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Stan wiedzy w dziedzinie monitoringu jakości powietrza
Języki publikacji
EN
Abstrakty
EN
This article gives a broad overview of common air pollutants mainly occurring in metropolitan environments. Starting from volatile organic compounds (VOCs) and ending with particles matter concentration (PM). The main characteristics of air pollutants and areas of occurrence are discussed. Special attention was given to the acceptable ranges of occurring contaminants by discussing the main EU/WHO normative recommendations. The main area of review of the state of the art in air pollution monitoring was limited to the last few years. The shown direction of development of modern measurement systems towards low-cost sensors working in the structures of the Internet of Things reflects the latest development trends in monitoring of climatic parameters.
PL
W artykule przedstawiono szeroki przegląd zanieczyszczeń powietrza występujących głównie w środowiskach miejskich. Począwszy od lotnych związków organicznych (LZO), a skończywszy na stężeniu cząstek stałych (PM). Omówiono główne cechy zanieczyszczeń powietrza i obszary ich występowania. Szczególną uwagę zwrócono na dopuszczalne zakresy występujących zanieczyszczeń, omawiając główne zalecenia normatywne UE/WHO. Główny obszar przeglądu stanu wiedzy w zakresie monitoringu zanieczyszczeń powietrza ograniczono do ostatnich kilku lat. Wskazany kierunek rozwoju nowoczesnych systemów pomiarowych w kierunku tanich czujników pracujących w strukturach Internetu Rzeczy odzwierciedla najnowsze trendy rozwojowe w monitorowaniu parametrów klimatycznych.
Rocznik
Strony
1--10
Opis fizyczny
Bibliogr. 78 poz., ys., tab.
Twórcy
  • Politechnika Warszawska, Instytut Elektrotechniki Teoretycznej i Systemów Informacyjno Pomiarowych
autor
  • Politechnika Warszawska, Instytut Elektrotechniki Teoretycznej i Systemów Informacyjno Pomiarowych
  • Politechnika Warszawska, Instytut Elektrotechniki Teoretycznej i Systemów Informacyjno Pomiarowych
  • Politechnika Warszawska, Instytut Elektrotechniki Teoretycznej i Systemów Informacyjno Pomiarowych
  • Wojskowa Akademia Techniczna, Instytut Systemów Elektronicznych, Warszawa, ul S. Kaliskiego 3
Bibliografia
  • [1] Real-time air quality forecasting, part I: History, techniques, and current status Yang Zhang, Marc Bocquet, Vivien Malle, Christian Seigneur, Alexander Baklanov, Atmospheric Environment 60, 2012 pp. 632-653
  • [2] Aliyu Aliyu Babayo, Mohammad Hossein Anisi⁎, Ihsan Ali A Review on energy management schemes in energy harvesting wireless sensor networks, Renewable and Sustainable Energy Reviews 76 (2017) 1176–1184
  • [3] A.I. Dounis, C. Caraiscos, Advanced control systems engineering for energy and comfort management in a building environment—A review, Renewable and Sustainable Energy Reviews 13 (2009) 1246–1261
  • [4] Frauke Oldewurtel, David Sturzenegger, Manfred Morari, Importance of occupancy information for building climate control, Applied Energy 101 (2013) 521–532
  • [5] Daniel Minoli, Kazem Sohraby, and Benedict Occhiogrosso, IoT Considerations, Requirements, and Architectures for Smart Buildings—Energy Optimization and Next-Generation Building Management Systems, IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 1, FEBRUARY 2017, 269–283
  • [6] https://www.prohealthintl.org/current-projects/
  • [7] Robert Bogue, Environmental sensing: strategies, technologies, and applications, www.emeraldinsight.com/0260-2288.htm
  • [8] European collaborative action 'Indoor air quality and its impact on man', European Union, 1996
  • [9] Lachatre, M.; Foret, G.; Laurent, B.; Siour, G.; Cuesta, J.; Dufour, G.; Meng, F.; Tang, W.; Zhang, Q.; Beekmann, M. Air Quality Degradation by Mineral Dust over Beijing, Chengdu, and Shanghai Chinese Megacities. Atmosphere 2020, 11, 708, doi:10.3390/atmos11070708
  • [10] World Health Organization, ed., Who guidelines for indoor air quality: selected pollutants, WHO, Copenhagen, 2010, https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
  • [11] Fraczkowski, T. Monitoring of particulate matter in the atmosphere (part I). LAB Laboratoria, Aparatura, Badania 2017, 22
  • [12] Donatella Puglisi, Editorial: Sensors for Air Quality Monitoring, Indoor and Outdoor, Frontiers in Sensors | www.frontiersin.org 1 December 2021 | Volume 2 | Article 813445
  • [13] Xiaoting Liua, Rohan Jayaratnea, Phong Thaia, Tara Kuhna, Isak Zingb, Bryce Christensena, Riki Lamontb, Matthew Dunbabinb, Sicong Zhuc, Jian Gaod, David Wainwrighte, Donald Nealee, Ruby Kanf, John Kirkwoodf, Lidia Morawska, Low-cost sensors as an alternative for long-term air quality monitoring, Environmental Research 185 (2020) 109438
  • [14] Aakash C. Rai, Prashant Kumar, Francesco Pilla, Andreas N.Skouloudis, Silvana Di Sabatino, Carlo Ratti, Ansar Yasar, David Rickerby, End-user perspective of low-cost sensors for outdoor air pollution monitoring, Science of the Total Environment 607–608 (2017) 691–705
  • [15] Francesco Concas, Julien Mineraud, Eemil Lagerspetz, Samu Varjonen, Xiaoli Liu, Kai Puolamäki, Petteri Nurmi, Sasu Tarkoma, Low-cost outdoor air quality monitoring and sensor calibration: a survey and critical analysis. A preprint - January 26, 2021
  • [16] A. Hernandez-Gordilloꞏ S. Ruiz-Correa ꞏ V. Robledo-Valero ꞏ C. Hernandez-Rosales ꞏ S. Arriaga, Recent advancements in low-cost portable sensors for urban and indoor air quality monitoring, Air Quality, Atmosphere & Health https://doi.org/10.1007/s11869-021-01067-x
  • [17] Karagulian, F., Gerboles, M., Barbiere, M., Kotsev, A., Lagler, F., Borowiak, A., Review of sensors for air quality monitoring, EUR 29826 EN, Publications Office of the European Union, Luxembourg, 2019, ISBN 978-92-76-09255-1, doi:10.2760/568261, JRC116534
  • [18] Nam H. Nguyen, Huy X. Nguyen, Thuan T. B. Le, Chinh D. Vu,Evaluating Low-Cost Commercially Available Sensors for Air Quality Monitoring and Application of Sensor Calibration Methods for Improving Accuracy, Open Journal of Air Pollution, 2021, 10, 1-17
  • [19] Dharmendra Singh, Meenakshi Dahiya, Rahul Kumar, Chintan Nanda, Sensors and systems for air quality assessment monitoring and management: A review, Journal of Environmental Management 289 (2021) 112510
  • [20] Tancev, G. Relevance of Drift Components and Unit-to-Unit Variability in the Predictive Maintenance of Low-Cost Electrochemical Sensor Systems in Air Quality Monitoring. Sensors 2021, 21, 3298. https://doi.org/10.3390/s21093298
  • [21] Yi Li, Ziyang Yuan, L.-W. Antony Chen, Ajay Pillarisetti, Varun Yadav, Mengxian Wu, Houxin Cui, Chuanfeng Zhao, from air quality sensors to sensor networks: Things we need to learn, Sensors & Actuators: B. Chemical 351 (2022) 130958
  • [22] Lan Luo, Yue Zhang, Bryan Pearson, Zhen Ling, Haofei Yu, Xinwen Fu, On the Security and Data Integrity of Low-Cost Sensor Networks for Air Quality Monitoring, Sensors 2018, 18, 4451; doi:10.3390/s18124451
  • [23] Ho-Seon Park, Ra-Eun Kim Yongmi Park, Kyu-Cheol Hwang, Seung-Hyun Lee, Jae-Jin Kim, Jin-Young Choi, Dae-Gyun Lee, Lim-Seok Chang, Wonsik Choi, The Potential of Commercial Sensors for Spatially Dense Short-term Air Quality Monitoring Based on Multiple Short-term Evaluations of 30 Sensor Nodes in Urban Areas in Korea, Aerosol and Air Quality Research, 20: 369–380, 2020
  • [24] Laurent Spinellea, Michel Gerbolesa, Maria Gabriella Villanib, Manuel Aleixandrec, Fausto Bonavitacola, Field calibration of acluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide, Sensors and Actuators B 215 (2015) 249–257
  • [25] Alice Cavaliere, Federico Carotenuto, Filippo Di Gennaro, Beniamino Gioli, Giovanni Gualtieri, Francesca Martelli, Alessandro Matese, Piero Toscano, Carolina Vagnoli and Alessandro Zaldei, Development of Low-Cost Air Quality Stations for Next Generation Monitoring Networks: Calibration and Validation of PM2.5 and PM10 Sensors, Sensors 2018, 18, 2843; doi:10.3390/s18092843
  • [26] Daniel Ibaseta, Julio Molleda, Fidel Díez and Juan C. Granda, Indoor Air Quality Monitoring Sensor for the Web of Things, Proceedings 2018, 2, 1466; doi:10.3390/proceedings2231466
  • [27] Mohieddine Benammar, Abderrazak Abdaoui, Sabbir H.M. Ahmad, Farid Touati and Abdullah Kadri, A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring, Sensors 2018, 18, 581; doi:10.3390/s18020581
  • [28] Floris, A.; Porcu, S.; Girau, R.; Atzori, L. An IoT-Based Smart Building Solution for Indoor Environment Management and Occupants Prediction. Energies 2021, 14, 2959. https://doi.org/10.3390/en14102959
  • [29] Meng Kong, Bing Dong, Rongpeng Zhang, Zheng O'Neill, HVAC energy savings, thermal comfort, and air quality for occupant-centric control through a side-by-side experimental study, Applied Energy, Volume 306, Part A, 2022, 117987, ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2021.117987
  • [30] Y. Yang, S. Srinivasan, G. Hu, and C. J. Spanos, "Distributed Control of Multizone HVAC Systems Considering Indoor Air Quality," in IEEE Transactions on Control Systems Technology, vol. 29, no. 6, pp. 2586-2597, Nov. 2021, doi: 10.1109/TCST.2020.3047407
  • [31] Jo, J.H.; Jo, B.; Kim, J.H.; Choi, I. Implementation of IoT-Based Air Quality Monitoring System for Investigating Particulate Matter (PM10) in Subway Tunnels. Int. J. Environ. Res. Public Health 2020, 17, 5429. https://doi.org/10.3390/ijerph17155429
  • [32] Minqiu Zhou, Amir M. Abdulghani, Muhammad A. Imran, and Qammer H. Abbasi. 2020. Internet of Things (IoT) Enabled Smart Indoor Air Quality Monitoring System. In Proceedings of the 2020 International Conference on Computing, Networks, and Internet of Things (CNIOT2020). Association for Computing Machinery, New York, NY, USA, 89–93. DOI: https://doi.org/10.1145/3398329.3398342
  • [33] Kang, J.; Hwang, K.-I. A Comprehensive Real-Time Indoor Air-Quality Level Indicator. Sustainability 2016, 8, 881, doi:10.3390/su8090881
  • [34] Moiş, G.D.; Sanislav, T.; Folea, S.C.; Zeadally, S. Performance Evaluation of Energy-Autonomous Sensors Using Power-Harvesting Beacons for Environmental Monitoring in Internet of Things (IoT). Sensors 2018, 18, 1709, doi:10.3390/s18061709
  • [35] Michalak, P. Selected Aspects of Indoor Climate in a Passive Office Building with a Thermally Activated Building System: A Case Study from Poland. Energies 2021, 14, 860, doi:10.3390/en14040860
  • [36] Ha, Q.P.; Metia, S.; Phung, M.D. Sensing Data Fusion for Enhanced Indoor Air Quality Monitoring. IEEE Sensors Journal 2020, 20, 4430–4441, doi:10.1109/JSEN.2020.2964396
  • [37] P. Satyanarayana, R. Narmadha, Implementation of Wireless Sensor Network Based Indoor Air Quality Monitoring System using GSM, International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249–8958, Volume-8, Issue-6, August 2019
  • [38] Adnan Masic, Goran Kepnik, Jasmin Bektesevic, Midhat Mehuljic, Isad Saric, Vahidin Hadziabdic, The network of smart sensors for indoor air quality monitorin, 31st DAAAM international symposium on intelligent manufacturing and automation, DOI: 10.2507/31st.daaam.proceedings.032, 232–235
  • [39] Patricia Arroyo, José Luis Herrero, José Ignacio Suárez and Jesús Lozano, Wireless Sensor Network Combined with Cloud Computing for Air Quality Monitoring, Sensors 2019, 19, 691; doi:10.3390/s19030691
  • [40] Huirong Luo, Li Wang, Xiangcheng Wu, Design of indoor air quality monitoring system based on wireless sensor network, IOP Conf. Series: Earth and Environmental Science 208 (2018) 012070 IOP Publishing doi:10.1088/1755-1315/208/1/012070
  • [41] Truong TV, Nayyar A, Masud M. 2021. A novel air quality monitoring and improvement system based on wireless sensor and actuator networks using LoRa communication. PeerJ Comput. Sci. 7: e711 http://doi.org/10.7717/peerj-cs.711
  • [42] 42 YU Tong, XU Mei-de, YU Zi-han and ZHANG Tian-qing, Design of air quality monitoring system based on light scattering sensor, IOP Conf. Series: Earth and Environmental Science 647 (2021) 012196 doi:10.1088/1755-1315/647/1/012196
  • [43] Maroua Said, Khaoula ben Abdellafou, Okba Taouali, Mohamed Faouzi Harkat, A new monitoring scheme of an air quality network based on the kernel method, The International Journal of Advanced Manufacturing Technology (2019) 103:153–163
  • [44] Asbach, C. Development and Evaluation of a Highly Effective Gas Particle Partitioner with Minimal Effect on the Gas Composition. 2013
  • [45] Enigella, S. R.; Shahnasser, H. "Real Time Air Quality Monitoring," 2018 10th International Conference on Knowledge and Smart Technology (KST), 2018, pp. 182-185, doi: 10.1109/KST.2018.8426102
  • [46] Cambra-López, M.; Winkel, A.; Mosquera, J.; Ogink, N. W. M.; Aarnink, A. J. A., „Comparison between light scattering and gravimetric samplers for PM10 mass concentration in poultry and pig houses”, Atmospheric Environment, t. 111, s. 20–27, cze. 2015
  • [47] Serowaniec, M. Sustainable Development Policy and Renewable Energy in Poland. Energies 2021, 14, 2244. https://doi.org/10.3390/en14082244
  • [48] Patashnick, H.; Rupprecht, E.G. Continuous PM-10 Measurements Using the Tapered Element Oscillating Microbalance. Journal of the Air & Waste Management Association 1991, 41, 1079–1083, doi:10.1080/10473289.1991.10466903
  • [49] Makowski, L.; Dziadak, B.; Suproniuk, M. Design and Development of Original WSN Sensor for Suspended Particulate Matter Measurements. Opto-Electronics Review2019, 27, 363–368, doi:10.1016/j.opelre.2019.11.005
  • [50] Sensor ULPSM-CO 968-001 dataset https://www.spec-sensors.com/wp-content/uploads/2016/10/ULPSM-CO-968-001.pdf (access 12-11-2021)
  • [51] Sensor ULPSM-NO2 968-047 dataset https://www.spec-sensors.com/wp-content/uploads/2016/10/ULPSM-NO2-968-047_8-25-17.pdf (access 12-11-2021)
  • [52] Sensor Figaro lpm2610 dataset https://www.maritex.com.pl/product/attachment/84562/0c6d403ae3a8d9d5a832d05afecd6ad9 (access 12-11-2021)
  • [53] Sensor Figaro CDM7160-C00 - Pre-calibrated CO2 http://www.figaro.co.jp/en/product/docs/cdm7160-c00_product%20infomation%28en%29_rev00.pdf (access 12-11-2021)
  • [54] Sensor DTH11 dataset https://components101.com/sensors/dht11-temperature-sensor (access 12-11-2021)
  • [55] Sensor KF30 dataset https://senseair.com/products/flexibility-counts/k30-fr/ (access 12-11-2021)
  • [56] Bigi, A., Mueller, M., Grange, S. K., Ghermandi, G., and Hueglin, C.: Performance of NO, NO2 low-cost sensors and three calibration approaches within a real world application, Atmos. Meas. Tech., 11, 3717–3735, ttps://doi.org/10.5194/amt-11-3717-2018, 2018
  • [57] Duangsuwan, S.; Takarn, A.; and Jamjareegulgarn, P. "A Development on Air Pollution Detection Sensors based on NB-IoT Network for Smart Cities," 2018 18th International Symposium on Communications and Information Technologies (ISCIT), 2018, pp. 313-317, doi: 10.1109/ISCIT.2018.8587978
  • [58] HOBO RX3000 Remote Monitoring Station dataset https://www.onsetcomp.com/products/data-loggers/rx3000-indoor/ (access 12-11-2021)
  • [59] Bosh gas sensor dataset https://www.bosch-sensortec.com/products/environmental-sensors/gas-sensors/ (access 12-11-2021)
  • [60] Ashton K, That Internet of Things Thing: In the Real WorldThings Matter More than Ideas., RFID Journal, 2009.
  • [61] Firdaus, R.; Murti, M. A.; Alinursafa, I. "Air Quality Monitoring System Based Internet of Things (IoT) Using LPWAN LoRa," 2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), 2019, pp. 195-200, doi: 10.1109/IoTaIS47347.2019.8980437
  • [62] Stojkoska, B. L. R.;. Trivodaliev, K. V. “A review of Internet of Things for smart home: Challenges and solutions”, J. Cleaner Prod., vol. 140, pp. 1454-1464, Jan. 2017.
  • [63] Dziadak, B.; Makowski, L.; Michalski, A. “Some practical problems of communications reliability in environmental monitoring systems”, Metrology and Measurement Systems, 2013, XX, pp. 337–350
  • [64] Oh, J.; Song, H. "Study on the Effect of LTE on the Coexistence of NB-IoT," 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Prague, Czech Republic, 2018, pp. 610-612, doi: 10.1109/ICUFN.2018.8436641
  • [65] Kan, Y. -C.; Lin, H. -C.; Wu, H. -Y; Lee, J. "LoRa-Based Air Quality Monitoring System Using ChatBot," 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Auckland, New Zealand, 2020, pp. 1561-1565
  • [66] Jagriti Saini, Maitreyee Dutta, Goncalo Marques, Sensors for indoor air quality monitoring and assessment through Internet of Things: a systematic review, Environ Monit Assess (2021) 193: 66
  • [67] Mroue, H.; Nasser, A.; Hamrioui, S.; Parrein, B.; Motta-Cruz, E.; Rouyer, G. "MAC layer-based evaluation of IoT technologies: LoRa, SigFox and NB-IoT," 2018 IEEE Middle East and North Africa Communications Conference (MENACOMM), Jounieh, Lebanon, 2018, pp. 1-5, doi: 10.1109/MENACOMM.2018.8371016
  • [68] George Mois, Silviu Folea, Teodora Sanislav, Analysis of Three IoT-Based Wireless Sensorsfor Environmental Monitoring, IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASURE MENT, VOL. 66, NO. 8, AUGUST 2017 pp. 2056–2064
  • [69] Jorge E. Gómeza, Fabricio R. Marcillob, Freddy L. Trianab,Victor T. Gallob Byron W. Oviedob, Velssy L. Hernánde, IoT FOR ENVIRONMENTAL VARIABLES IN URBAN AREAS, Procedia Computer Science 109C (2017) 67–74
  • [70] Nwamaka U. Okafora, Yahia Alghoranib, Declan T. Delaney, Improving Data Quality of Low-cost IoT Sensors in Environmental Monitoring Networks Using Data Fusion, and Machine Learning Approach, ICT Express 6 (2020) 220–228
  • [71] Sunny, A.I., Zhao, A., Li, L. et al. Low-cost IoT-based sensor system: A case study on harsh environmental monitoring. Sensors, 21 (1). 214. ISSN 1424-8220
  • [72] Kewang Zhang, QizhaoWu and Xin Li, Relay participated–new-type building energy management system: An energy-efficient routing scheme for wireless sensor network–based building energy management systems, International Journal of Distributed Sensor Networks 2017, Vol. 13(1), 1-12
  • [73] Silvia Liberata Ullo, G. R. Sinha, Advances in Smart Environment Monitoring Systems Using IoT and Sensors, Sensors 2020, 20, 3113; doi:10.3390/s20113113
  • [74] Sean Dieter Tebje Kelly, Nagender Kumar Suryadevara, and Subhas Chandra Mukhopadhyay, Towards the implementation of IoT for Environmental Condition Monitoring in Homes, IEEE SENSORS JOURNAL, VOL. 13, NO. 10, OCTOBER 2013, 3846–3853
  • [75] Zheng, K.; Zhao, S.; Yang, Z.; Xiong, X.; Xiang, W. "Design and Implementation of LPWA-Based Air Quality Monitoring System," in IEEE Access, vol. 4, pp. 3238-3245, 2016, doi: 10.1109/ACCESS.2016.2582153
  • [76] Ratasuk, R.; Mangalvedhe, N.; Ghosh, A. "Overview of LTE enhancements for cellular IoT," 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015, pp. 2293-2297, doi: 10.1109/PIMRC.2015.7343680
  • [77] The EU Program TRAFAIR - Understanding Traffic Flows to Improve Air quality: https://trafair.eu
  • [78] Arano, K.A.G.; Sun, S.; Ordieres-Mere, J.; Gong, and B. The Use of the Internet of Things for Estimating Personal Pollution Exposure. International Journal of Environmental Research and Public Health 2019, 16, 3130, doi:10.3390/ijerph16173130
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e016e866-7379-49a4-8287-e1d700943bf8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.