Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The use of radiotracers in the present study is intended to replace traditional steps of metal quantitative analysis (solution sampling and instrumental chemical analysis) and to allow real-time measurements of metal concentrations during the leaching process. In this study, 64Cu, an isotope of copper, was selected as a radiotracer. Samples of copper flotation tailings were irradiated in the Maria research reactor (Świerk, Poland) and mixed with an inactive portion of the milled flotation waste. The leaching process was carried out in a glass reactor, and the radiation spectrum was measured using a gamma spectrometer. The material was then treated using various acids (sulphuric acid, nitric acid, acetic acid, citric acid, and ascorbic acid) in a wide range of their concentrations. Experiments with the radiotracer were conducted in sulphuric and nitric acids. The amount of the leached metal (copper) was calculated on the basis of the peak area ratio in the gamma-ray spectrum of the activated tailings and standard samples. Inductively coupled plasma mass spectrometry (ICP-MS) was also used to analyse the metal content. Maximum recovery of 56% Cu was achieved using 9 M HNO3, whereas the recovery was lowest for ascorbic acid (1%). Both analytical methods were compared, and the results presented in this paper are in good agreement with radiometric measurements obtained using ICP-MS analysis.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
131--137
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
- Institute of Nuclear Chemistry and Technology 16 Dorodna Str., 03-195 Warsaw, Poland
autor
- Institute of Nuclear Chemistry and Technology 16 Dorodna Str., 03-195 Warsaw, Poland
autor
- Institute of Nuclear Chemistry and Technology 16 Dorodna Str., 03-195 Warsaw, Poland
autor
- Institute of Nuclear Chemistry and Technology 16 Dorodna Str., 03-195 Warsaw, Poland
autor
- Institute of Nuclear Chemistry and Technology 16 Dorodna Str., 03-195 Warsaw, Poland
Bibliografia
- 1. Kijewski, P., & Downorowicz, S. (1987). Odpady poflotacyjne rudy miedzi jako potencjalna rezerwa surowcowa. Fizykochemiczne Problemy Mineralurgii, 19, 205–211.
- 2. Kisielowska, E., Kasińska-Pilut, E., & Jaśkiewicz, J. (2007). Badania nad wpływem wybranych czynników fizykochemicznych na efektywność procesu bioługowania odpadów poflotacyjnych przy wykorzystaniu grzybów pleśniowych z gatunku Aspergillusniger.Górnictwo i Geoinżynieria, 31(3/1), 247–255.
- 3. Kotarska, I. (2012). Odpady wydobywcze z górnictwa miedzi w Polsce – bilans, stan zagospodarowania i aspekty środowiskowe. Cuprum, 4(65), 45–63.
- 4. Baran, A., Śliwka, M., & Lis, M. (2013). Selected properties of flotation tailings wastes deposited in the Gilów and Żelazny Most waste reservoirs regarding their potential environmental management. Arch. Min.Sci., 58(3), 969–978. DOI: 10.2478/amsc-2013-0068.
- 5. Łuszczkiewicz, A. (2000). Koncepcje wykorzystania odpadów flotacyjnych z przeróbki rud miedzi w regionie legnicko-głogowskim. Inżynieria Mineralna, 1(1), 25–35.
- 6. Ahmed, I. M., Nayl, A. A., & Daoud, J. A. (2016). Leaching and recovery of zinc and copper from brass slag by sulfuric acid. J. Saudi Chem. Soc., 20, S280–S285. DOI: 10.1016/j.jscs.2012.11.003.
- 7. Urosevic, D. M., Dimitrijevic, M. D., & Jankovic, Z. D. (2015). Recovery of copper from copper slag and copper slag flotation tailings by oxidative leaching. Physicochem. Probl. Miner. Pro., 51(1), 73–82. DOI:10.5277/ppmp150107.
- 8. Mohanty, U. S., Rintala, L., Halli, P., Taskinen, P., & Lundström, M. (2018). Hydrometallurgical approach for leaching of metals from copper rich side stream originating from base metal production. Metals, 8(1), 40(12 pp.). DOI: 10.3390/met8010040.
- 9. Antonijević, M. M., Dimitrijević, M. D., Stevanović, Z. O., Serbula, S. M., & Bogdanovic, G. D. (2008). Investigation of the possibility of copper recovery from the flotation tailings by acid leaching. J. Hazard. Mater., 158(1), 23–34. DOI: 10.1016/j.jhazmat.2008.01.063.
- 10. Barton, I., Ahn, J., & Lee, J. (2018). Mineralogical and metallurgical study of supergene ores of the mike Cu-Au (-Zn) deposit, Carlin trend, Nevada. Hydrometallurgy, 176, 176–191. DOI: 10.1016/j.hydromet.2018.01.022.
- 11. Bulut, G. (2006). Recovery of copper and cobalt from ancient slag. Waste Manage. Res., 24(2), 118–124. DOI: 10.1177/0734242X06063350.
- 12. Muravyov, M. I., Fomchenko, N. V., Usoltsev, A. V., Vasilyev, E. A., & Kondrat’eva, T. F. (2012). Leaching of copper and zinc from copper converter slag flotation tailings using H2SO4 and biologically generated Fe2(SO4)3. Hydrometallurgy, 119/120, 40–46. DOI: 10.1016/j.hydromet.2012.03.001.
- 13. Wang, Y., Wen, S., Feng, Q., Xian, Y., & Liu, D. (2015).Leaching characteristics and mechanism of copper flotation tailings in sulfuric acid solution. Russ. J. Non-Ferrous Metals, 56(2), 127–133. DOI: 10.3103/ S1067821215020170.
- 14. Astuti, W., Hirajima, T., Sasaki, K., & Okibea, N. (2016). Comparison of effectiveness of citric acid and other acids in leaching of low-grade Indonesian saprolitic ores. Miner. Eng., 85, 1–16. DOI: 10.1016/j.mineng.2015.10.001.
- 15. Irannajad, M., Meshkini, M., & Azadmehr, A. R.(2013). Leaching of zinc from low grade oxide ore using organic acid. Physicochem. Probl. Miner. Pro., 49(2), 547–555. DOI: 10.5277/ppmp130215.
- 16. Raza, N., Iqbal Zafar, Z., & Najam-ul-Haq (2013). An analytical model approach for the dissolution kinetics of magnesite ore using ascorbic acid as leaching agent. Int. J. Metals, Article ID 352496. DOI: 10.1155/2013/352496.
- 17. Dybczynski, R., Kulisa, K., Małusecka, M., Mandecka, M., Polkowska-Motrenko, H., Sterlinski, S., & Szopa, Z. (1990). A comprehensive study on the contents and leaching of trace elements from fly-ash originating from Polish hard coal by NAA and AAS methods. Biol. Trace Elem. Res., 26(1), 335–345.DOI: 10.1007/BF02992688.
- 18. Zovko, E., & Pujić, Z. (1991). Application of neutron activation in the control of an ore disintegration process. J. Radioanal. Nucl. Chem., 154(6), 365–370.DOI: 10.1007/BF02169769.
- 19. Figueiredo, A. M. G., Avristcher, W., Masini, E. A.,Diniz, S. C., & Abrão, A. (2002). Determination of lanthanides (La, Ce, Nd, Sm) and other elements in metallic gallium by instrumental neutron activation analysis. J. Alloy. Compd., 344(1/2), 36–39. DOI: 10.1016/S0925-8388(02)00301-8.
- 20. Vind, J., Alexandri, A., Vassiliadou, V., & Panias, D. (2018). Distribution of selected trace elements in the Bayer process. Metals, 8(5), 327(21 pp.). DOI: 10.3390/met8050327.
- 21. Tsertsvadze, L. A., Dzadzamia, L. A., Petrashvili, Sh.G., Shutkerashvili, D. G., Kirkesali, E. I., Frontasyeva, M. V., Pavlov, S. S., & Gundorina, S. F. (2001). Development of the method of bacterial leaching of metals Studies on hydrometallurgical processes using nuclear techniques...Part II 137 out of low-grade ores, rocks, and industrial wastes using neutron activation analysis. In K. Marinova, V. P. Perelygin, & P. Vater (Eds.), Radionuclides and heavy metals in environment (Vol. 5, pp. 245–257).(NATO Science Series, IV: Earth and Environmental Series). Dordrecht: Springer.
- 22. Iller, E., & Thýn, J. (1994). Metody radioznacznikowe w praktyce przemysłowej. Warszawa: WNT. 23. Smoliński, T., Rogowski, M., Brykała, M., Pyszynska, M., & Chmielewski, A. G. (2018). Studies on hydrometallurgical processes using nuclear techniques to be applied in copper industry. I. Application of 64Cu radiotracer for investigation of copper ore leaching. Nukleonika, 63(4), 123–129. DOI: 10.2478/nuka2018-0015.
- 24. Bujdoso, E., Feher, I., & Kardos, G. (1973). Activation and decay tables of radioisotopes. Amsterdam, New York: Elsevier.
- 25. Jaroszewicz, J., Marcinkowska, Z., & Pytel, K. (2014). Production of fission product 99Mo using high-enriched uranium plates in Polish nuclear research reactor MARIA: Technology and neutronic analysis. Nukleonika, 59(2), 43–52. DOI: 10.2478/nuka-2014-0009.
- 26. Chmielewski, T. (2016). Hydrometalurgia w odzyskiwaniu metali z koncentratów KGHM. In 4 Konferencja międzynarodowa – Metale towarzyszące w przemyśle metali nieżelaznych pt. „Metale towarzyszące kluczemdo efektywnego wykorzystania zasobów w gospodarce cyrkulacyjnej”, 15–17.06.2016. Wrocław, Poland.
- 27. Petryka, L., & Przewlocki, K. (1983). Radiotracer investigations of benefication copper ore in the industrial flotation process. Isotopenpraxis Isot. Environ. Health Stud., 19(10), 339–341. DOI:10.1080/10256018308544932.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e014e4b1-bcb1-41df-aff1-544010760112