Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper investigates the Luenberger observer design problem for non-autonomous control semilinear evolution equations with disturbances in Banach spaces. Then, the practical stabilization problem of the system is solved, yielding a compensator based on the Luenberger observer by using integral inequalities of the Gronwall type. Sufficient conditions of the controller and observer problem are satisfied, we show that the proposed controller with estimated state feedback from the proposed practical Luenberger observer will achieve global practical stabilization. We develop novel ideas and techniques, which present the further development of mathematical control theory. Furthermore, an example is given to show the applicability of our theoretical results.
Czasopismo
Rocznik
Tom
Strony
5--22
Opis fizyczny
Bibliogr. 28 poz., wzory
Twórcy
autor
- Faculty of Sciences of Sfax, Department of Mathematics, Sfax, Tunisia
autor
- Preparatory Engineering Institute of Sfax, Department of Mathematics, Sfax, Tunisia
autor
- Faculty of Sciences of Sfax, Department of Mathematics, Sfax, Tunisia
Bibliografia
- [1] M.E. Achhab: On observers and compensators for infinite dimensional semilinear systems. Evolution Equations and Control Theory, 4(2), (2015), 131-142. DOI: 10.3934/eect.2015.4.131
- [2] M.J. Balas: Towards a more practical control theory for distributed parameter systems. Control and Dynamics Systems, 18 (1982), 361-421. DOI: 10.1016/B978-0-12-012718-4.50014-1
- [3] N.A. Baleghi and M.H. Shafiei: An observer-based controller design for nonlinear discrete-time switched systems with time-delay and affine parametric uncertainty. Archives of Control Sciences, 30(3), (2020), 501-521. DOI: 10.24425/acs.2020.134674
- [4] A. Benabdallah, I. Ellouze, and M.A. Hammami: Practical exponential stability of perturbed triangular systems and a separation principle. Asian Journal of Control, 13(3), (2011), 445-448. DOI: 10.1002/asjc.325
- [5] D.S. Bernstein and D.C. Hyland: The optimal projection equations for finite-dimensional fixed-order dynamic compensation of infinite-dimensional systems. SIAM Journa of Control and Optimization, 24(1), (1986), 122-151. DOI: 10.1137/0324006
- [6] C. Chicone and Y. Latushkin: Evolution Semigroups in Dynamical Systems and Differential Equations. American Mathematical Society, 1999.
- [7] R.F. Curtain: Stabilization of boundary control distributed systems via integral dynamic output feedback of a finite-dimensional compensator. In A. Bensoussan and J.L. Lions (Eds), Analysis and Optimization of Systems. Lecture Notes in Control and Opimization, 44 Springer, (1982), 761-776.
- [8] R.F. Curtain: Compensators for infinite-dimensional linear systems. Journal of the Franklin Institute, 315(5-6), (1983), 331-346. DOI: 10.1016/0016-0032(83)90057-1
- [9] R.F. Curtain: Finite-dimensional compensators for parabolic distributed systems with unbounded control and observation. SIAM Journal on Control and Optimization, 22(2), (1984), 225-276. DOI: 10.1137/0322018
- [10] R.F. Curtain and D. Salamon: Finite-dimensional compensators for infinite-dimensional systems with unbounded input operators. SIAM Journal on Control and Optimization, 24(4), (1986), 797-816. DOI: 10.1137/0324050
- [11] R.F. Curtain: A comparaison of finite-dimensional controller designs for distributed parameter systems. Control Theory and Technology, 9(3), (1993), 609-628.
- [12] R.F. Curtain and H.J. Zwart: An Introduction to Infinite Dimensional Linear Systems Theory. Springer-Verlag, New York, 1995.
- [13] M. Hammi and M.A. Hammami: Non-linear integral inequalities and applications to asymptotic stability. IMA Journal of Mathematical Control and Information, 32(4), (2015), 717-736. DOI: 10.1093/imamci/dnu016
- [14] H. Damak: On the practical compensator design of time-varying perturbed systems in Hilbert spaces. Numerical Functional Analysis and Optimization, 34(6), (2022), 650-666. DOI: 10.1080/01630563.2022.2055061
- [15] H. Damak, M.A. Hammami and K. Maaloul: Stability analysis for non-autonomous semilinear evolution equations in Hilbert spaces: A practical approach. Operators and Matrices, 16(4), (2022), 1045-1062. DOI: 10.7153/oam-2022-16-70
- [16] H. Damak and M.A. Hammami: Stabilization by an estimated state controller of nonlinear time-varying systems. Analysis, 43(1), (2023), 15-30. DOI: 10.1515/anly-2022-1050
- [17] H. Damak: Compensator design via the separation principle for a class of semilinear evolution equations. Ukrainian Mathematical Journal, 74(8), (2022), 1073-1085. DOI: 10.37863/umzh.v74i8.6152
- [18] N. Hadj Taieb, M.A. Hammami and F. Delmotte: A separation principle for Takagi-Sugeno control fuzzy systems. Archives of Control Sciences, 29(2), (2019), 227-245. DOI: 10.24425/acs.2019.129379
- [19] M.A. Hammami: Global convergence of a control system by means of an observer. Journal of Optimization Theory and Applications, 108(2), (2001), 377-388. DOI: 10.1023/A:1026442402201
- [20] M.A. Hammami: Global stabilization of a certain class of nonlinear dynamical systems using state detection. Applied Mathematics Letters, 14(8), (2001), 913-919. DOI: 10.1016/S0893-9659(01)00065-9
- [21] M.A. Hammami: Global observers for homogeneous vector fields. Nonlinear Analysis: Modelling and Control, 10(3), (2005), 197-210.
- [22] I. Karafyllis and Z.P. Jiang: Stability and Stabilization of Nonlinear Systems. Springer, London, 2011.
- [23] S. Kitamura, H. Sakairi and M. Mishimura: Observers for distributed parameter systems. Electrical Engineering in Japan, 92 (1972), 142-149.
- [24] V. Lakshmikantham and S. Leela: Practical Stability of Nonlinear Systems. Singapore, World Scientific, 1990.
- [25] A. Larrache, M. Lhous, S.B. Rhila, M. Rachik and A. Tridane: An output sensitivity problem for a class of linear distributed systems with uncertain initial state. Archives of Control Sciences, 30(1), (2020), 139-155. DOI: 10.24425/acs.2020.132589
- [26] Y. Menasria, H. Bouras and N. Debbache: An interval observer design for uncertain nonlinear systems based on the T-S fuzzy model. Archives of Control Sciences, 27(3), (2017), 397-407. DOI: 10.1515/acsc-2017-0025
- [27] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, 1983.
- [28] S. Sutrima, C.R. Indrati and L. Aryati: Exact null controllability, stabilizability, and detectability of linear nonautonomous control systems: A quasisemigroup approach. Abstract and Applied Analysis, 2018 (2018), 1-12. DOI: 10.1155/2018/3791609
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e01372ea-cb16-4014-99cd-bb2dec350dbb