PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application and comparison of modified classifiers for human activity recognition

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Przegląd metod klasyfikacji danych używanych do rozpoznawania aktywności człowieka
Języki publikacji
EN
Abstrakty
EN
In this paper, custom modifications of Orthogonal Matching Pursuit and Self Organizing Maps based classification algorithms are used and compared to standard and widely used classification techniques with applications to human activity recognition. Seven algorithms are compared in terms of their accuracy performance. The modifications are described in this paper and shown to perform better than commonly used classifiers. The results indicate that human activities can be successfully and reliably recognized even without data preprocessing.
W artykule opisano klasyczne i rzadziej używane metody klasyfikacji danych używanych do rozpoznawania aktywności człowieka. Po równano szereg algorytmów oraz zmodyfikowano algorytm OMP w celu usunięcia ograniczeń.
Rocznik
Strony
55--58
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • VŠB - Technical University of Ostrava
autor
  • VŠB - Technical University of Ostrava
autor
  • VŠB - Technical University of Ostrava
autor
  • VŠB - Technical University of Ostrava
Bibliografia
  • [1] Khan, A.M., Young-Koo Lee, Lee, S.Y., Tae-Seong Kim, A Triaxial Accelerometer-Based Physical Activity Recognition via Augmented-Signal Features and a Hierarchical Recognizer, Information Technology in Biomedicine, IEEE Transactions on , 14(5), 1166-1172, Sept. 2010
  • [2] Eunju Kim, Helal, S., Cook, D., Human Activity Recognition and Pattern Discovery, Pervasive Computing, IEEE , 9(1), 48-53, Jan. 2010
  • [3] Davide Angui t a , Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge L. Reyes-Or t i z , Human activity recognition on smartphones using a multiclass hardwarefriendly support vector machine. Proceedings of the 4th international conference on Ambient Assisted Living and Home Care (IWAAL'12), José Bravo, Ramón Hervás, and Marcela Rodríguez (Eds.). Springer-Verlag, Berlin, Heidelberg, 216-223, 2012
  • [4] Loh W.Y. , Classification and regression trees, 14–23, 2011
  • [5] Ripley B. , Classification and regression trees, R package version, 2005
  • [6] Jatoba L.C., Grossmann U., Kunze C., Ottenbacher J., Stork W., Context-aware mobile health monitoring: Evaluation of different pattern recognition methods for classification of physical activity, Engineering in Medicine and Biology Society, 30th Annual International Conference of the IEEE, 5250 –5253, 2008
  • [7] Maurer U., Smailagic A., Siewiorek D.P., Deisher M., Activity recognition and monitoring using multiple sensors on different body positions, Wearable and Implantable Body Sensor Networks, 2006. BSN 2006. International Workshop on, IEEE, 2006
  • [8] Jang J.S.R. , Sun C.T., Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1997
  • [9] Ziaeefard M. , Ebrahimnezhad H., Human action recognition by RANSAC based salient features of skeleton history image using ANFIS, Machine Vision and Image Processing (MVIP), 2010 6th Iranian, 1–5, 2010
  • [10] D.Lavanya, Rani D.K., Performance Evaluation of Decision Tree Classifiers on Medical Datasets, International Journal of Computer Applications, 26(4), 1–4, 2011
  • [11] Wright J . , Yang A.Y., Ganesh A., Sastry S.S., Ma Y., Robust Face Recognition via Sparse Representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 210–227, 2009
  • [12] Gajdos P and Moravec P., Two-step modified SOM for parallel calculation, in DATESO, ser. CEUR Workshop Proceedings, J. Pokorný, V. Snásel, and K. Richta, Eds., vol. 567. CEUR-WS.org, 2010, pp. 13–21.
  • [13] Wei-gang, L., A study of parallel self-organizing map. In: Proceedings of the International Joint Conference on Neural Networks. (1999)
  • [14] Hor ton P. , Nakai K., Better Prediction of Protein Cellular Localization Sites with the it k Nearest Neighbors Classifier, Ismb, 5, 147–152, 1997
  • [15] Haralick R.M., Shanmugam K., Dinstein I.H. , Textural features for image classification, Systems, Man and Cybernetics, IEEE Transactions on, (6), 610–621, 1973
  • [16] Fuj inaga I . , MacMi l lan K. , Realtime recognition of orchestral instruments, Proceedings of the international computer music conference, 141, 2000
  • [17] Levner I . , Feature selection and nearest centroid classification for protein mass spectrometry., BMC bioinformatics, 6, 2005
  • [18] Dabney A.R., Classification of microarrays to nearest centroids, Bioinformatics, 21, 4148–4154, 2005
  • [19] Hess K.R., Abbruzzese M.C., Lenzi R., Raber M.N. , Abbruzzese J.L. , Classification and regression tree analysis of 1000 consecutive patients with unknown primary carcinoma, Clinical Cancer Research, 5(11), 3403–3410, 1999
  • [20] Liaw A., Wiener M., Classification and Regression by randomForest, R news, 2(3), 18–22, 2002
  • [21] L i M., Yuan B., 2D-LDA: A statistical linear discriminant analysis for image matrix, Pattern Recognition Letters, 26(5), 527–532, 2005
  • [22] Haeb-Umbach R., Ney H., Linear discriminant analysis for improved large vocabulary continuous speech recognition, Acoustics, Speech, and Signal Processing, 1992. ICASSP-92., 1992 IEEE International Conference on, 1, 13– 16, IEEE, 1992
  • [23] Zhang M., Identification of protein coding regions in the human genome by quadratic discriminant analysis, Proceedings of the National Academy of Sciences, 94(2), 565–568, 1997
  • [24] Blumensath T. , Dav ies M.E., On the Difference Between Orthogonal Matching Pursuit and Orthogonal Least Squares, 2007
  • [25] Reiss A. , St r i cker D. , Creating and Benchmarking a New Dataset for Physical Activity Monitoring, The 5th Workshop on Affect and Behaviour Related Assistance (ABRA), 2012
  • [26] Reiss A. , St r i cker D. , Introducing a New Benchmarked Dataset for Activity Monitoring, The 16th IEEE International Symposium on Wearable Computers (ISWC), 2012
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e00eb014-31f0-4087-b450-34aaea0b6655
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.