Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The quiet environment of the carbonate platform in the epeiric sea that existed during the Cambrian between present-day China and Korea was occasionally affected by processes that have hitherto not been described from such a setting. A conglomerate was found in the Middle Cambrian Gushan Formation near Chengouwan (Shandong Province, E China), eroded into the underlying sediments. The conglomerate is explained as a deposit consisting of material that was eroded up-slope when slope-failure took place, resulting in a slump that passed into a high-density debris flow with erosive power that passed, in turn, again into a slump. The slump came to rest when it lost its momentum on a less inclined part of the basin slope. Immediately after deposition, fluidization occurred in the lower part of the slump deposit, as proven by a funnel-shaped water-escape structure and a lateral injection of some metres long of brecciated material.
Czasopismo
Rocznik
Tom
Strony
3--15
Opis fizyczny
Bibliogr. 51 poz., fot., rys., tab.
Twórcy
autor
- Shandong University of Science and Technology, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, No. 579 Qianwangang Road, Qingdao, Shandong 266590, China
autor
- Shandong University of Science and Technology, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, No. 579 Qianwangang Road, Qingdao, Shandong 266590, China
autor
- Shandong University of Science and Technology, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, No. 579 Qianwangang Road, Qingdao, Shandong 266590, China
autor
- Key Laboratory of Geological Mineralization Processes of Metals and Resource Utilization in Shandong Province, No. 52 Lishan Road, Jinan 250013, China
- Ministry of Land and Resources of the People's Republic of China, Key Laboratory of Gold Mineralization Processes and Resources Utilization, No. 52 Lishan Road, Jinan 250013, China
autor
- Shandong Geological Environmental Monitoring, No. 17 Jishan Road, Jinan 250013, China
autor
- Shandong University of Science and Technology, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, No. 579 Qianwangang Road, Qingdao, Shandong 266590, China
- Qingdao National Laboratory for Marine Science and Technology, Laboratory for Marine Mineral Resources, No. 1 Wenhai Road, Qingdao 266237, China
Bibliografia
- 1. Alsop, G.I., Marco, S., 2011. Soft-sediment deformation within seismogenic slumps of the Dead Sea Basin. Journal of Structural Geology, 33: 433-457.
- 2. Carvalho, A.H., Vesely, F.F., 2017. Facies relationships recorded in a Late Paleozoic fluvio-deltaic system (Parana Basin, Brazil): insights into the timing and triggers of subaqueous sediment gravity flows. Sedimentary Geology, 352: 45-62.
- 3. Chen, J., 2015. Origin of the Furongian limestone breccias in the North China Platform. Science China Earth Sciences, 58: 770-775.
- 4. Chen, J., Lee, H.S., 2013. Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits (Shandong Province, China): differential liquefaction and fluidization triggered by storm-wave loading. Sedimentary Geology, 288: 81-94.
- 5. Chen, J., Chough, S.K., Chun, S.S., Han, Z., 2009a. Limestone pseudoconglomerates in the Late Cambrian Gushan and Chaomidian Formations (Shandong Province, China): soft-sediment deformation induced by storm-wave loading. Sedimentology, 56: 1174-1195.
- 6. Chen, J., Van Loon, A.J., Han, Z., Chough, S.K., 2009b. Funnel-shaped, breccia-filled clastic dykes in the Late Cambrian Chaomidian Formation (Shandong Province, China). Sedimentary Geology, 221: 1-6.
- 7. Chen, J., Han, Z., Zhang, X., Fan, A., Yang, R., 2010. Early diagenetic deformation structures of the Furongian ribbon rocks in Shandong Province of China - a new perspective of the genesis of limestone conglomerates. Science China Earth Sciences, 53: 241-252.
- 8. Chen, J., Chough, S.K., Han, Z., Lee, J.-H., 2011. An exensive erosion surface of a strongly deformed limestone bed in the Gushan and Chaomidian Formations (late Middle Cambrian to Furongian), Shandong Province, China: sequence-stratigraphic implications. Sedimentary Geology, 233: 129-149.
- 9. Chen, J., Chough, S.K., Lee, J.-H., Han, Z., 2012. Sequence - stratigraphic comparison of the upper Cambrian Series 3 to Furongian succession between the Shandong region, China and the Taebaek area, Korea: high variability of bounding surfaces in an epeiric platform. Geosciences Journal, 16: 357-379.
- 10. Chen, J., Lee, J.-H., Woo, J., 2014. Formative mechanisms, depositional processes, and geological implications of Furongian (Late Cambrian) reefs in the North China Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 414: 246-259.
- 11. Chough, S.K., Lee, H.S., Woo, J., Chen, J., Choi, D.K., Lee, S.-B., Kang, I., Park, T.-Y., Han, Z., 2010. Cambrian stratigraphy of the North China Platform: revisiting principal sections in Shandong Province, China. Geosciences Journal, 14: 235-268.
- 12. Field, M.E., Gardner, V., Jennings, A.E., Edwards, B.D., 1982. Earthquake-induced sediment failures on a 0.25° slope, Klamath river delta, California. Geology, 10: 542-546.
- 13. Fukushima, Y., Parker, G., Pantin, H.M., 1985. Prediction of ignitive turbidity currents in Scripps submarine canyon. Marine Geology, 67: 55-81.
- 14. García-Tortosa, F.J., Pedro Alfaro, P., Gibert, L., Scott, G., 2011. Seismically induced slump on an extremely gentle slope (<1 °) of the Pleistocene Tecopa paleolake (California). Geology, 39: 1055-1058.
- 15. Gibert, L., Sanz de Galdeano, C., Alfaro, P., Scott, G., Lopez Garrido, A.C., 2005. Seismic induced slump in Early Pleistocene deltaic deposits of the Baza Basin (SE Spain). Sedimentary Geology, 179: 279-294.
- 16. Han, Z., Zhang, X., Chi, N., Han, M., Woo, J., Lee, H., Chen, J., 2015. Cambrian oncoids and other microbial-related grains on the North China Platform. Carbonates and Evaporites, 30: 373-386.
- 17. Hughes-Clarke, J.E., 1990. Late stage slope failure in the wake of the 1929 Grand Banks earthquake. Geo-Marine Letters, 10: 69-79.
- 18. Lee, H.J., Chough, S.K., Chun, S.S., Han, S.J., 1991. Plateau slope, sediment failure on the Korea Plateau slope, East Sea (Sea of Japan). Marine Geology, 97: 363-377.
- 19. Lee, H.S., Chough, S.K., 2011. Depositional processes of the Zhushadong and Mantou Formations (Early to Middle Cambrian), Shandong Province, China: roles of archipelago and mixed cabonate-siliciclastic sedimentation on cycle genesis during initial flooding of the North China Platform. Sedimentology, 58: 1530-1572.
- 20. Lee, H.S., Chen, J., Han, Z., Chough, S.K., 2018. Depositional processes and environmental changes during initial flooding of epeiric platform: Liguan Formation (Cambrian Series 2), Shandong Province, China. Geosciences Journal, 22: 903-919.
- 21. Locat, J., Mienert, J. eds., 2003. Submarine Mass Movements and their Consequences. Kluwer Academic Publishers, Dordrecht.
- 22. Lowe, D.R., 1979. Sediment gravity flows: their classification and some problems of application to natural flows and deposits. SEPM Special Publication, 27: 75-82.
- 23. Lowe, D.R., 1982. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology, 52: 279-297.
- 24. Lu, Y.H., Dong, N.T., 1952. Revision of the Cambrian type sections of Shantung (in Chinese). Acta Geologica Sinica, 3: 164-201.
- 25. Ma, Y., Mei, M., Zhou, R., 2017. Forming patterns of an oolitic bank within a sequence-stratigraphic framework: an example from the Cambrian Series 3 in the Xiaweidian section in the Western Suburb of Beijing (in Chinese with English summary). Acta Petrologica Sinica, 33: 1021-1036.
- 26. Malinverno, A., Ryan, W.B.F., Auffret, G.A., Pautot, G., 1988. Sonar images of the path of recent failure events on the continental margin off Nice, France. GSA Special Paper, 229: 59-75.
- 27. Mei, M., Ma, Y., Mei, S., Hu, J., 1997. Framework of a Cambrian sedimentary succession and evolution of the carbonate platform in North China (in Chinese). Geoscience, 3: 275-282.
- 28. Meng, X., Ge, M., Tucker, M.E., 1997. Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114: 189-222.
- 29. Middleton, G.V., Hampton, M.A., 1973. Sediment gravity flows: mechanics of flow and deposition. In: Turbidites and Deep-water Sedimentation (eds. G.V. Middleton and A.H. Bouma): 1-38. SEPM Pacific Section.
- 30. Middleton, G.V., Hampton, M.A., 1976. Subaqueous sediment transport and deposition by sediment gravity flows. In: Marine Sediment Transport and Environmental Management (eds. D.J. Stanley and D.J.P. Swift): 197-218. Wiley, New York.
- 31. Mienert, J., Weaver, P.P.E. eds., 2002. European Margin Sediment Dynamics, Side-Scan Sonar and Seismic Images. Springer-Verlag, Berlin.
- 32. Moretti, M., Sabato, L., 2007. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant'Arcangelo Basin (southern Italy): seismic shock vs. overloading. Sedimentary Geology, 196: 31-45.
- 33. Mulder, T., Syvitski, J.P.M., Migeon, S., Faugčres, J.-C., Savoye, B., 2003. Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20: 861-882.
- 34. Myrow, P.M., Chen, J., 2015. Estimates of large magnitude Late Cambrian earthquakes from seismogenic soft-sediment deformation structures: Central Rocky Mountains. Sedimentology, 62: 621-644.
- 35. Nardin, T.R., Hein, F.J., Gorsline, D.S., Edwards, B.D., 1979. A review of mass movement processes and acoustic characieristics, and contrasts in slope and base-of-slope systems versus canyon-fan-basin floor systems. SEPM Special Publication, 27: 61-73.
- 36. Owen, G., 1996. Experimental soft-sediment deformation: structures formed by the liquefaction of unconsolidated sands and some ancient examples. Sedimentology, 43: 279-293.
- 37. Parker, G., 1982. Conditions for the ignition of catastrophically erosive turbidity currents. Marine Geology, 46: 307-327.
- 38. Parker, G., Fukushima, Y., Pantin, H.M., 1986. Self-accelerating turbidity currents. Journal of Fluid Mechanics, 171: 145-181.
- 39. Pedley, H.M., Cugno, G., Grasso, M., 1992. Gravity slide and resedimentation processes in a Miocene carbonate ramp, Hyblean Plateau, southeastern Sicily. Sedimentary Geology, 79: 189-202.
- 40. Piper, D.J.W., Cochonat, P., Ollier, G., Le Drezen, E., Morrison, M., Baltzer, A., 1992. Evolution progressive d'un glissement rotationnel en un courant de turbidité: cas du séisme de 1929 des Grands Bancs (Terre Neuve). Comptes Rendus de l'Academie des Sciences, Paris, 314, Série II: 1057-1064.
- 41. Sobiesiak, M.S., Kneller, B., Alsop, G.I., Milana, J.P., 2016. Internal deformation and kinematic indicators within a tripartite mass transport deposit, NW Argentina. Sedimentary Geology, 344: 364-381.
- 42. Strachan, L.J., 2008. Flow transformations in slumps: a case study from the Waitemata Basin, New Zealand. Sedimentology, 55: 1311-1332.
- 43. Sultan, N., Cochonat, P., Canals, M., Cattaneo, A., Dennielou, B., Haflidason, H., Laberg, J.S., Long, D., Mienert, J., Trincardi, F., Urgeles, R., Vorren, T.O., Wilson, C., 2004. Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Marine Geology, 213: 291-321.
- 44. Tian, H., Ma, Y., Di, M., 1994. Storm deposits of Gushan and Changshan formations at Panchegou region of Xintai in Shandong Province (in Chinese). Journal of China University of Petroleum, 18: 8-13.
- 45. Tournadour, E., Mulder, T., Borgomano, J., Hanquiez, V., Gillet, H., 2015. Origin and architecture of a mass transport complex on the northwest slope of Little Bahama Bank (Bahamas): relations between off-bank transport, bottom current sedimentation and submarine landslides. Sedimentary Geology, 317: 9-26.
- 46. Van Loon, A.J., Han, Z., Han, Y., 2012. Slide origin of breccia lenses in the Cambrian of the North China Platform: new insight into mass transport in an epeiric sea. Geologos, 18: 223-235.
- 47. Van Loon, A.J., Han, Z., Han, Y., 2013. Origin of the vertically orientated clasts in brecciated shallow-marine limestones of the Chaomidian Formation (Furongian, Shandong Province, China). Sedimentology, 60: 1059-1070.
- 48. Wang, L., 1995. The stratigraphic significance of the astronomical period and the storm function of Late Cambrian in North China (in Chinese). Journal of Hebei College of Geology, 18: 328-333.
- 49. Wang, Y.H., Zhang, X.L., Yang, C.Y., 1989. Carbonate Petrology of the Early Paleozoic in the North China Platform (in Chinese). Beijing: Earthquake Publishing House: 1-50.
- 50. Yang, R., Van Loon, A.J., Jin, X., Jin, Z., Han, Z., Fan, A., Liu, Q., 2019. From divergent to convergent plates: Resulting facies shifts along the southern and western margins of the Sino-Korean Plate during the Ordovician. Journal of Geodynamics, 129: 149-161.
- 51. Zhen, Y., Zhang, Y. Wang, Z., Percival, I., 2016. Huaiyuan epeirogeny - shaping Ordovician stratigraphy and sedimentation on the North China Platiorm. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 363-370.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dffeb04b-0992-4a9d-b960-980d8e3bea36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.