PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluating lateral riverbank erosion with sediment yield through integrated model in lower Gangetic floodplain, India

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the natural disasters caused by river meandering is riverbank erosion, which creates social, economic, and environmental problems in the riparian zone and serves as a source of increasing sedimentation levels in the river. Riverbank erosion and bank failure create a complex cyclical process, such as riverbank retreat, which cannot be easily measured and predicted by any model. The meandering flow along the Bhagirathi-Hooghly river has created riverbank erosion and riverbank retreat conditions in several areas, through which measuring bank stability and erosion is quite complex. As a result, the BSTEM model, integrating with HEC-RAS, has been used in this article to measure riverbank erosion and retreat accurately. Riverbank erosion and retreat data for 2019–2020 have been simulated based on data observed from 2016 to 2018 for accurate measurement. In addition, the total sediment yielded from the river bank has been calibrated and simulated with the help of sediment transport formulation in HEC-RAS, which indicates a gradual increase in river erosion at present (2019–2020). This model is expected to help formulate government policy on protecting riverbank erosion and river restoration in the future.
Czasopismo
Rocznik
Strony
1769--1795
Opis fizyczny
Bibliogr. 61 poz.
Twórcy
autor
  • School of Water Resources Engineering, Jadavpur University, Kolkata 700032, India
  • Department of Geography, Women’s College, Kolkata 700 003, India
  • School of Water Resources Engineering, Jadavpur University, Kolkata 700032, India
Bibliografia
  • 1. Albidin RZ, Sulaiman MS, Yusoff N (2017) Erosion risk assessment: a case study of the Langat riverbank in Malaysia. Int Soil Water Conserv Res 5:26–35. https://doi.org/10.1016/j.iswcr.2017.01.002
  • 2. Allmanova Z, VIckova M, Jankovsky M, Allman M (2021) How can stream bank erosion be predicted on small water courses? Verification of BANCS model on the Kubrica watershed. Int J Sediment Res 36(3):419–429. https://doi.org/10.1016/j.ijsrc.2020.10.008
  • 3. Al-Madhhachi A-ST, Al-Mussawy HA, Basheer MI, Abdul-Sahib AA (2020) Quantifying Tigris riverbanks stability of southeast Baghdad city using BSTEM. Int J Hydrol Sci Technol 10(3):230–247. https://doi.org/10.1504/IJHST.2020.107212
  • 4. Amiri-Tokaldany E, Darby SE, Tosswell P (2003) Bank stability analysis for predicting reach scale land loss and sediment yield. J Am Water Resour Assoc 39(4):897–909. https://doi.org/10.1111/j.1752-1688.2003.tb04414.x
  • 5. Bandyopadhyay S, Kar NS, Das S, Sen J (2014) River systems and water resources of West Bengal: a review. Spec Publ Geol Soc India 3:63–84. https://doi.org/10.17491/cgsi%2F2014%2F62893
  • 6. Bankhead N, Simon A, Thomas R, Klimetz L, Klimetz D (2010) Sediment loadings from streambanks and levees along the Sacramento river and selected tributaries. U.S Department of Agriculture, Agriculture Research Service, National Sedimentation Laboratory, Oxford, Mississippi
  • 7. Brunner GW, CEIWR-HEC (2021) HEC-RAS river analysis system user’s manual v 6.0. US army corps of engineers, Hydraulic Engineering Center, Davis, CA
  • 8. Brunner GW, Warner JC, Wolfe BC, Piper SS, Marston L (2021) HEC-RAS river analysis system application guide v 6.0. US army corps of engineers, Hydraulic Engineering Center, Davis, CA
  • 9. CEIWR-HEC (2015) HEC-RAS USDA-ARS Bank stability and toe erosion model (BSTEM) technical reference and user manual. US army corps of engineers, Hydraulic Engineering Center, Davis, CA
  • 10. Darby SE, Thorne CR (1996) Numerical simulation of widening and bed deformation of straight sand-bed rivers I: model development. J Hydraul Eng 122:184–193. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:4(184)
  • 11. Das BC (2014) Impact of in-bed and on-bank soil cutting by brick fields on moribund deltaic rivers: a study of Nadia river in West Bengal. NEHU J 12(2):101–111
  • 12. Duan G, Shu A, Rubinato M, Wang S, Zhu F (2018) Collapsing mechanisms of the typical cohesive riverbank along the ningxia-inner Mongolia catchment. Water 10:1272. https://doi.org/10.3390/w10091272
  • 13. Gasser E, Perona P, Dorren L, Phillips C, Hubl J, Schwarz M (2020) A new framework to model hydraulic bank erosion considering the effects of roots. Water 12(3):893. https://doi.org/10.3390/w12030893
  • 14. Ghosh KG, Pal S, Mukhopadhyay S (2016) Validation of BANCS model for assessing stream bank erosion hazard potential (SBEHP) in Bakreshwar river of Rarh region. Eastern India Model Earth Syst Environ 2:95. https://doi.org/10.1007/s40808-016-0172-0
  • 15. Ghosh A, Biswas Roy M, Roy PK (2020) Estimation and prediction of the oscillation pattern of meandering geometry in a sub-catchment basin of Bhagirathi-Hooghly river, West Bengal, India. S N Appl Sci. https://doi.org/10.1007/s42452-020-03275-z
  • 16. Ghosh A, Roy MB, Roy PK, Mukherjee S (2021) Assessing the nature of sediment transport with bridge scour by 1D sediment transport model in the sub-catchment basin of Bhagirathi-Hooghly river. Model Earth Syst Environ. https://doi.org/10.1007/s40808-020-01058-4
  • 17. Gibson S, Sanchez A (2020) HEC-RAS sediment transport user’s manual v 6.0. US army corps of engineers, Hydraulic Engineering Center, Davis, CA
  • 18. Gibson S, Simon A, Langendoen EJ, Bankhead N, Shelley J (2015) A physically-based channel-modeling framework integrating HEC-RAS sediment transport capabilities and the USDA-ARS bank-stability and toe-erosion model (BSTEM). In: Proceedings of 3rd joint federal interagency sedimentation and hydrologic modeling conference, Reno, NV,19–23 Apr 2015, p 12
  • 19. Grabowski RC, Droppo IG, Wharton G (2011) Erodibility of cohesive sediment: the importance of sediment properties. Earth Sci Rev 105:101–120. https://doi.org/10.1016/j.earscirev.2011.01.008
  • 20. Gupta D, Hazarika BB, Berlin M (2020) Robust regularized extreme learning machine with asymmetric Huber loss function. Neural Comput Appl 32:12971–12998. https://doi.org/10.1007/s00521-020-04741-w
  • 21. Gupta D, Hazarika BB, Berlin M et al (2021) Artificial intelligence for suspended sediment load prediction: a review. Environ Earth Sci 80:346. https://doi.org/10.1007/s12665-021-09625-3
  • 22. Hazarika BB, Gupta D, Berlin M (2020) Modeling suspended sediment load in a river using extreme learning machine and twin support vector regression with wavelet conjunction. Environ Earth Sci 79:234. https://doi.org/10.1007/s12665-020-08949-w
  • 23. Hazarika BB, Gupta D, Berlin M (2021) A coiflet LDMR and coiflet OB-ELM for river suspended sediment load prediction. Int J Environ Sci Technol 18:2675–2692. https://doi.org/10.1007/s13762-020-02967-8
  • 24. Hooke JM (1972) An analysis of the processes of riverbank erosion. J Hydrol 42:39–62. https://doi.org/10.1016/0022-1694(79)90005-2
  • 25. Hudson J, Sweby PK (2005) A high-resolution scheme for the equations governing 2D bed-load sediment transport. Int J Numer Meth 47:1085–1091. https://doi.org/10.1002/fld.853
  • 26. Julian JP, Torres R (2006) Hydraulic erosion of cohesive riverbanks. Geomorphology 76:193–206. https://doi.org/10.1016/j.geomorph.2005.11.003
  • 27. Klavon K, Fox G, Guertault L, Langendoen E, Enlow H, Miller R, Khanal A (2016) Evaluating a process-based model for use in streambank stabilization: insights on the bank stability and toe erosion model (BSTEM). Earth Surf Proc Land 42(1):191–213. https://doi.org/10.1002/esp.4073
  • 28. Konsoer KM, Rhoads BL, Langendoen EJ, Best JL, Ursic ME, Abad JD, Garcia MH (2015) Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river. Geomorphology 252:80–97. https://doi.org/10.1016/J.GEOMORPH.2015.08.002
  • 29. Koohafkan M, Gibson S, Boyd PM, Pridal D (2019) Modeling bank migration on the Missouri river with HEC-RAS: a calibrated HEC-RAS/BSTEM model. In: Proceedings of the SEDHYD 2019 conference on sedimentation and hydrologic modeling, Reno, Nevada, USA, 24–28 June 2019, p 8
  • 30. Krzeminska D, Kerkhof T, Skaalsveen K, Stolte J (2019) Effect of riparian vegetation on stream bank stability in small agricultural catchments. CATENA 172:87–96. https://doi.org/10.1016/j.catena.2018.08.014
  • 31. Lammers RW, Bledsoe BP, Langendoen EJ (2016) Uncertainty and sensitivity in a bank stability model: implications for estimating phosphorus loading. Earth Surf Proc Land 42(4):612–623. https://doi.org/10.1002/esp.4004
  • 32. Langendoen EJ, Simon A (2008) Modeling the evolution of incised streams. II: streambank erosion. J Hydraul Eng 134:905–915. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:7(905)
  • 33. Lawler DM (1993) The measurement of river bank erosion and lateral channel change: a review. Earth Surf Process Landf 18:777–821. https://doi.org/10.1002/esp.3290180905
  • 34. Lindow N, Fox GA, Evans RO (2009) Seepage erosion in layered stream bank material. Earth Surf Process Landf 34:1693–1701. https://doi.org/10.1002/esp.1874
  • 35. Luppi L, Rinaldi M, Teruggi LB, Darby SE, Nardi L (2008) Monitoring and numerical modelling of riverbank erosion processes: a case study along the Cecina river (central Italy). Earth Surf Process Landf 34(4):530–546. https://doi.org/10.1002/esp.1754
  • 36. Majumdar S, Mandal S (2020) Acceptance of BANCS model for predicting stream bank erosion potential and rate in the left bank of Ganga river of Diara region in Malda district, North East India. Spat Inf Res 29:43–54. https://doi.org/10.1007/s41324-020-00334-w
  • 37. Midgley TL, Fox GA, Heeren DM (2011) Evaluation of the bank stability and toe erosion model (BSTEM) for predicting lateral streambank retreat on Ozark streams. In: Proceedings of world environmental and water resources congress 2011, Palm Springs, California, United States, 22–26 May 2011, https://doi.org/10.1061/41173(414)209
  • 38. Nanson GC, Hickin EJ (1986) A statistical analysis of bank erosion and channel migration in western Canada. Geol Soc Am Bull 97:497–504. https://doi.org/10.1130/0016-7606(1986)97%3C497:ASAOBE%3E2.0.CO;2
  • 39. Osman AM, Thorne CR (1988) Riverbank stability analysis. I: theory. J Hydraul Eng 114:134–150. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:2(134)
  • 40. Pal R, Biswas SS, Pramanik MK, Mondal B (2016) Bank vulnerability and avulsion modeling of the Bhagirathi-Hugli river between Ajay and Jalangi confluences in lower Ganga Plain India. Model Earth Syst Environ 2:65. https://doi.org/10.1007/s40808-016-0125-7
  • 41. Palmar JA, Schilling KE, Isenhart TM, Schultz RC, Tomer MD (2014) Streambank erosion rates and loads within a single watershed: bridging the gap between temporal and spatial scales. Geomorphology 209:66–78. https://doi.org/10.1016/j.geomorph.2013.11.027
  • 42. Panda S, Bandyopadhyay J (2011) Morphodynamic changes of Bhagirathi river at Murshidabad district using geoinformatics. J Geogr Inf Syst 3:85–97. https://doi.org/10.4236/jgis.2011.31006
  • 43. Rasouli MO, Sadat SH, Xenarios S (2020) Evaluating stream bank instability and toe erosion using BSTEM model for the Amu river. J Environ Sci Rev 1(1):1–6
  • 44. Rinaldi M, Mengoni B, Luppi L, Darby SE, Mosselman E (2008) Numerical simulation of hydrodynamics and bank erosion in a river bend. Water Resour Res 44:303–312. https://doi.org/10.1029/2008WR007008
  • 45. Rivas T, Chowdhury S, AuBuchon J, Nguyen H, Langendoen E, Ursic M, Eom M, Majd MS, Cheung FY (2019) Erosion Assessment of Sacramento and American river levees. In: Proceedings of SEDHYD 2019 conference on sedimentation and hydrologic modeling, Reno, Nevada, USA, June 24–28 2019, p 16
  • 46. Rudra K (2010) Dynamics of the Ganga in West Bengal, India (1764–2007): implications for science-policy interaction. Quat Int 227:161–169. https://doi.org/10.1016/j.quaint.2009.10.043
  • 47. Rudra K (2014) Changing river courses in the western part of the Ganga–Brahmaputra delta. Geomorphology 227:87–100. https://doi.org/10.1016/j.geomorph.2014.05.013
  • 48. Samadi A, Amiritokaldany E, Darby SE (2009) Identifying the effects of parameter uncertainty on the reliability of riverbank stability modelling. Geomorphology 106:219–230. https://doi.org/10.1016/j.geomorph.2008.10.019
  • 49. Simon A, Collison AJC (2001) Pore-water pressure effects on the detachment of cohesive streambeds: seepage forces and matric suction. Earth Surf Process Landf 26:1421–1442. https://doi.org/10.1002/ESP.287
  • 50. Simon A, Curini A, Darby SE, Langendoen EJ (2000) Bank and near-bank processes in an incised channel. Geomorphology 35:193–217. https://doi.org/10.1016/S0169-555X(00)00036-2
  • 51. Simon A, Pollen-Bankhead N, Mahacek V, Langendoen E (2009) Quantifying reductions of mass-failure frequency and sediment loadings from streambanks using toe protection and other means: lake Tahoe, United States. J Am Water Resour Assoc 45:170–186. https://doi.org/10.1111/j.1752-1688.2008.00268.x
  • 52. Simon A, Pollen-Bankhead N, Thomas RE (2011) Development and application of a deterministic bank stability and toe erosion model for stream restoration. In: Simon A, Bennett SJ, Castro JM (Eds) Stream restoration in dynamic fluvial systems, American Geophysical Union, Washington, D. C
  • 53. Simon A (2010) Iterative bank-stability and toe-erosion modeling for predicting streambank loading rates and potential load reductions. In: Proceedings of 2nd joint federal interagency conference, Las Vegas, NV, June 27–July 1 2010
  • 54. Stryker J, Wemple B, Bomblies A (2017) Modeling sediment mobilization using a distributed hydrological model coupled with a bank stability model. Water Resour Res 53(3):2051–2073. https://doi.org/10.1002/2016WR019143
  • 55. Taghavi M, Dovoudi MH, Amiritokaldany E, Darby SE (2010) An analytical method to estimate failure plane angle and tension crack depth for use in riverbank stability analyses. Geomorphology 123:74–83. https://doi.org/10.1016/j.geomorph.2010.06.017
  • 56. Thapa I, Tamrakar NK (2016) Bank stability and toe erosion model of the Kodku Khola bank, southeast Kathmandu valley, central Nepal. J Nepal Geol Soc 50:105–111. https://doi.org/10.3126/jngs.v50i1.22870
  • 57. Thorne CR (1982) Processes and mechanisms of river bank erosion. In: Bathurst JC, Thorne CR (Eds) Gravel-Bed rivers, Wiley and Sons, Chichester, UK, pp 227–259
  • 58. Twidale CR (1964) Erosion of an alluvial bank at birdwood. South Australia z Geomorphol 8:189–211. https://doi.org/10.1127/zfg/8/1964/189
  • 59. Yu M, Wei H, Liang Y, Hu C (2010) Study on the stability of non-cohesive river bank. Int J Sedim Res 25(4):391–398. https://doi.org/10.1016/S1001-6279(11)60006-1
  • 60. Yu M, Wei H, Wu S (2015) Experimental study on the bank erosion and interaction with near-bank bed evolution due to fluvial hydraulic force. Int J Sediment Res 1:81–89. https://doi.org/10.1016/S1001-6279(15)60009-9
  • 61. Zhang Z, Shu A, Zhang K, Liu H, Wang J, Dai J (2019) Quantification of river bank erosion by RTK GPS monitoring: case studies along the Ningxia-Inner Mongolia reaches of the Yellow river. China Environ Monit Assess 191:140. https://doi.org/10.1007/s10661-019-7269-7
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dff8d95a-0ea1-4d92-ad9f-4662e4b53502
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.