Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, we present a posteriori error estimates for the Euler-Bernoulli beam theory with inexact flexural stiffness representation. This is an important subject in practice because beams with non-uniform flexural stiffness are frequently modeled using a mesh of elements with constant stiffness. The error estimates obtained in this work are validated by means of two numerical examples. The estimates presented here can be employed for adaptive mesh refinement.
Słowa kluczowe
Rocznik
Tom
Strony
62--74
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
- Latin-American Institute of Technology, Infrastructure and Territory, Federal University for Latin-American Integration (UNILA) Foz do Iguaҫu, Brazil
autor
- Latin-American Institute of Technology, Infrastructure and Territory, Federal University for Latin-American Integration (UNILA) Foz do Iguaҫu, Brazil
autor
- Department of Civil Engineering, Federal University of Santa Catarina (UFSC) Florianópolis, Brazil
autor
- Department of Civil Engineering, Federal University of Santa Catarina (UFSC) Florianópolis, Brazil
Bibliografia
- [1] Cook, R.D., Malkus, D.S., Plesha, M.E., & Witt, R.J. (2002). Concepts and Applications of Finite Element Analysis. 4th ed. Hoboken: John Wiley & Sons.
- [2] Hutton, D.V. (2004). Fundamentals of Finite Element Analysis. McGraw-Hill.
- [3] Dong, Y., Yuan, S., & Xing, Q. (2019). Adaptive finite element analysis with local mesh refinement based on a posteriori error estimate of element energy projection technique. Engineering Computations, 36(6), 2010-2033.
- [4] Grätsch, T., & Bathe, K.-J. (2005). A posteriori error estimation techniques in practical finite element analysis. Computers & Structures, 83(4), 235-265.
- [5] Sun, H., & Yuan, S. (2023). An improved local error estimate in adaptive finite element analysis based on element energy projection technique. Engineering Computations, 40(1), 246-264.
- [6] Wang, Y. (2023). Finite element mesh refinement for in-plane and out-of-plane vibration of variable geometrical Timoshenko beams based on superconvergent vibration modes. Engineering Computations, 40(1), 22-40.
- [7] Zienkiewicz, O.C. (2006). The background of error estimation and adaptivity in finite element computations. Computer Methods in Applied Mechanics and Engineering, 195(4), 207-213.
- [8] Bauer, A.M., Wüchner, R., & Bletzinger, K.-U. (2020). Weak coupling of nonlinear isogeometric spatial Bernoulli beams. Computer Methods in Applied Mechanics and Engineering, 361, 112747.
- [9] Dvořáková, E., & Patzák, B. (2020). Isogeometric Bernoulli beam element with an exact representation of concentrated loadings. Computer Methods in Applied Mechanics and Engineering, 361, 112745.
- [10] Lestringant, C., Audoly, B., & Kochmann, D.M. (2020). A discrete, geometrically exact method for simulating nonlinear, elastic and inelastic beams. Computer Methods in Applied Mechanics and Engineering, 361, 112741.
- [11] Peres, N., Gonҫalves, R., & Camotim, D. (2021). A geometrically exact beam finite element for curved thin-walled bars with deformable cross-section. Computer Methods in Applied Mechanics and Engineering, 381, 113804.
- [12] Wei, D., & Liu, Y. (2012). Analytic and finite element solutions of the power-law Euler-Bernoulli beams. Finite Elements in Analysis and Design, 52, 31-40.
- [13] Hibbeler, R.C. (2022). Mechanics of Materials. 11th ed. Pearson.
- [14] Maple (2016). Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dff85029-a4e7-4ff2-bebf-4f2efc53ad35