PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact Damage Tolerance of Multilayer Epoxy-Glass Composites with Xps Core and Polyurethane Prepolymer Modified Matrix

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A significant need within the design of materials for vehicles or other engineering structures is to determine their potential to mitigate impact loads. The material acting as a shield during an impact absorbs energy, dissipating the excess in a process of irreversible deformation. In order to prevent this, or to limit the areas of damage as much as possible, have begun to be used materials that absorb impact energy without drastically compromising their strength. Energy Absorbing Composite Structures (EACS) have the ability to convert impact energy into some form of energy absorbed through deformation. Compared to homogeneous materials, a numer of factors also point to the increasing advantage of using composite sandwich structures, which, in addition to their high strength ratings, have a lower weight and a much more effective ability to absorb shock or impact load energy. This paper presents the results of damage tolerance testing of epoxy-glass sandwich composites with chemical modified matrix. The damage tolerance of the composites was determined using an Instron CEAST 9340 testing machine with an impact energy ranging from 5-35J and indicated the value at which visible damage to the composite occurs while it retains some of its strength properties. It was the most important test to determine the damage tolerance, but additional tests to characterise the strength of the composite more comprehensively were also performed. Experimental studies were used to present a methodology for the preliminary characterisation of the material strength and to analyse the relation between structure and mechanical response of the composite.
Twórcy
  • Faculty of Aviation, Polish Air Force University, ul. Dywizjonu 303 35, 08-530 Deblin, Poland
  • Faculty of Aviation, Polish Air Force University, ul. Dywizjonu 303 35, 08-530 Deblin, Poland
  • Faculty of Aviation, Polish Air Force University, ul. Dywizjonu 303 35, 08-530 Deblin, Poland
  • Faculty of Aviation, Polish Air Force University, ul. Dywizjonu 303 35, 08-530 Deblin, Poland
  • Faculty of Applied Chemistry, Casimir Pulaski Radom University, ul. Chrobrego 27, 26-600 Radom, Poland
  • Faculty of Information and Communication Technology, Wrocław University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
Bibliografia
  • 1. Baran I. Residual bending behaviour of sandwich composites after impact. Journal of Sandwich Structures & Materials 2018; 22(2): 402–422. https://doi.org/10.1177/1099636218757164
  • 2. Castilho T., Sutherland LS. Guedes SC. Impact resistance of marine sandwich composites. In: Soares G and Santos TA (eds) Maritime Technology and Engineering. London: Taylor & Francis Group 2015; 607–617. https://doi.org/10.13140/RG.2.1.4837.7044
  • 3. Zhang T., Yan Y., Li J. Experiments and numerical simulations of low-velocity impact of sandwich composite panels. Polymer Composites 2017; 38: 646–656. https://doi.org/10.1002/pc.23623
  • 4. Safri S.N.A. Low velocity and high velocity impact test on composite materials – A review. The International Journal of Engineering and Science 2014; 3(9): 50–60.
  • 5. Joshua J.J. A literature review on composite materials filled with and without nanoparticles subjected to high/low velocity impact loads. Materials Today: Proceedings 2020; 33(7): 4635–4641.
  • 6. Costa S. Physically based fibre kinking model for crash of composites. Thesis For The Degree Of Licentiate Of Engineering In: Solid and Structural Mechanics Department of Applied Mechanics. Chalmers University of Technology. Gothenburg. Sweden. 2016. https://publications.lib.chalmers.se/records/fulltext/245319/245319.pdf
  • 7. Shah S.Z.H.. Karuppanan S. Impact resistance and damage tolerance of fiber reinforced composites: A review. Composite Structures 2019; 217: 100–121. https://doi:10.1016/j.compstruct.2019.03.021
  • 8. Mazurkiewicz Ł. Badanie procesu delaminacji próbek kompozytowych w aspekcie oceny ich energochłonności. Modelowanie Inżynierskie 2012; 43: 169–176.
  • 9. Frigione M.E. Oligomeric and polymeric modifiers for toughening of epoxy resins. European Polymer Journal 1995; 31(11): 1021–1029. https://doi.org/10.1016/0014-3057(95)00091-7
  • 10. Jansen B.J.P. Preparation of thermoset rubbery epoxy particles as novel toughening modifiers for glassy epoxy resins. Polymer 1999; 40(20): 5601–5607.
  • 11. Ben Saleh A.B. Synthesis and characterization of liquid natural rubber as impact modifier for epoxy resin. Physics Procedia 2014; 55: 129–137.
  • 12. Chao M. Facile synthesis of a novel hyperbranched poly(urethane-phosphine oxide) as an effective modifier for epoxy resin. Polymer Degradation and Stability 2018; 154: 157–169.
  • 13. Zhang J. Properties improvement of composite layer of cryo-compressed hydrogen storage vessel by polyethylene glycol modified epoxy resin. International Journal of Hydrogen Energy 2023; 48: 5576–5594.
  • 14. Li G. Lignin-based silicone-modified epoxy resin with enhanced strength and toughness. International Journal of Adhesion and Adhesive 2024; 128.
  • 15. Chen L. Investigation of shape memory and heat transfer properties of graphene oxide (GO) reinforced shape memory epoxy resin composites. Materials Today Communications 2023; 34.
  • 16. Jagtap S.B. Nanocomposites based on epoxy resin and organoclay functionalized with a reactive modifier having structural similarity with the curing agent. Polymer 2015; 63: 41–51.
  • 17. Foix D. New pegylated hyperbranched polyester as chemical modifier of epoxy resins in UV cationic photocuring. Reactive and Functional Polymers 2011; 71(4): 417–424.
  • 18. Tan J. Hydrophobic epoxy resins modified by low concentrations of comb-shaped fluorinated reactive modifier. Progress in Organic Coatings 2017; 105: 353–361.
  • 19. Roszowska – Jarosz M. Mechanical properties of bio-composites based on epoxy resin and nanocellulose fibres. Materials. 2021; 14: 3576.
  • 20. Kostrzewa M. Effect of polyurethane type on mechanical properties of composites based on epoxy resin with IPN structure. Przetwórstwo Tworzyw 2015; 2: 131–134.
  • 21. PN-EN ISO 14125:2001
  • 22. Isaac C.W. A review of the crashworthiness performance of energy absorbing composite structure within the context of materials. manufacturing and maintenance for sustainability. Composite Structures 2021; 257: 113081.
  • 23. Ochelski S. Metody doświadczalne mechaniki kompozytów konstrukcyjnych. Wydawnictwo PWN. 2018.
  • 24. Zhu Y., Sun Y. Low-velocity impact response of multilayer foam core sandwich panels with composite face sheets. International Journal of Mechanical Sciences 2021; 209: 106704.
  • 25. Zimowski S., Adamczyk P. Oznaczanie cech wytrzymałościowych struktur z tworzyw sztucznych wzmocnionych włóknami. Akademia Górniczo-Hutnicza w Krakowie Wydział Inżynierii Mechanicznej i Robotyki 2014.
  • 26. Farrokhabadi A. Experimental and numerical analysis of novel multi-layer sandwich panels under three point bending load. Composite Structures 2020; 250: 112631.
  • 27. Redmann A. High-force dynamic mechanical analysis of composite sandwich panels for aerospace structures. Composites Part C: Open Access 2021; 5: 100136.
  • 28. Przybyłek P., Komorek A., Szczepaniak R. The influence of metal reinforcement upon the ablative properties of multi-layered composites. Advances in Science and Technology Research Journal 2023; 17(2): 111–119. https://doi.org/10.12913/22998624/161427
  • 29. Borowiec M., Szczepaniak R., Machado J. The influence of conditioning on dynamic behaviour of polymer composites. Advances in Science and Technology Research Journal 2023; 17(5): 195–207. https://doi.org/10.12913/22998624/171492
  • 30. Omen Ł., Szczepaniak R., Panas A.J. Investigation of carbon nanotube particles addition effect on the dispersed composite structure thermal diffusivity. Advances in Science and Technology Research Journal 2023; 17(5): 280–288. https://doi.org/10.12913/22998624/171593
  • 31. Czyż Z.. Jakubczak P.. Podolak P.. Skiba K.. Karpiński P.. Droździel-Jurkiewicz M.. Wendeker M. Deformation measurement system for UAV components to improve their safe operation. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2023; 25(4). http://doi.org/10.17531/ein/172358
  • 32. Szczepaniak R.. Kozun G.. Przybyłek. P.. Komorek A.. Krzyżak A.. Woroniak G. The effect of the applicaton of a powder additive od a phase change materials on the ablative properties of a hybrid composite. Composite Structures 2021; 256: 113041.
  • 33. Czyż Z.. Podolak P.. Skiba K.. Jakubczak P.. Karpiński P.. Różyło P.. Droździel-Jurkiewicz M. Autogyro Main Rotor Blade Strength Tests. IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace). Milan. Italy 2023. 199–204. https://doi.org/10.1109/MetroAeroSpace57412.2023.10190031
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dff381b1-5d00-4e90-b6bd-0db31469b81a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.