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The single-mode fiber provided by YOFC inc is employed for spiral processing by commercial
welding machine. It can clearly see the periods structure under the light, but there is no obvious
deformation of the fiber core, cladding and surface morphology under a microscope. There is an
obvious resonant peak near 1560 nm, half peak width is about 25 nm, the depth of the resonant
peak closed to –26 dB, when the period is about 411 μm. It agrees with theoretical calculation re-
sults according to the long-period fiber grating coupled-mode theory. The resonance wavelength
is caused by coupling between the fundamental mode and the LP14 mode. The responsivities of
the helically twisted long-period fiber gratings (H-LPFG) for the temperature is measured, the res-
onance wavelength is linear with temperature, the slope is 86 pm/℃. Because it is easy to inscribe
by commercial welding machine, and has a strong resonance peak, it has potential applications as
the temperature sensor.
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1. Introduction

Chiral fiber grating (CFG) is a kind of fiber having periodic helical refractive index
modulation with the axial and angle. In 2004 [1] the CFG was reported, and since then,
it has been widely studied. It has the circular polarization selection, wavelength selection,
orbital angular momentum and sensing applications, which attract wide attention [2–4].
Helically twisted long-period fiber grating (H-LPFG) is a kind of a long-period CFG.
It has advantages of both long-period fiber grating and CFG at the same time. 

The H-LPFGs, due to their advantages in the helical structure and long-period fiber
grating, have been mainly applied to sensing the twisting rate [5–7], the refractive in-
dex [8], the applied stress [9], temperature [9, 10], and to generate orbital angular mo-
mentum [11–13]. In 2014, GAO et al. processed CFG of a multipoint phase shift with
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CO2 laser. The twist sensitivity of CFG is 1.959 nm/(rad/m), and it has lower temper-
ature cross sensitivity [5]. In 2016, WANG and LI proposed a new method enabling fab-
rication of H-LPFGs in a thinned fiber with a diameter smaller than several tens of
micrometers. This method has been applied to the refractive index measurement [8].
In 2017, BING et al. produced H-LPFGs by the optical fiber welding machine with pro-
gramming, in which the strain sensitivity is 1.88 pm/με and the temperature sensitivity
is 69.9 pm/℃ [9]. In 2018, FU et al. used single-mode H-LPFGs to generate 1 order
vortex light [11]. In 2019, ZHAO et al. used four mode H-LPFGs to generate 2 order
vortex [12].

Until now, many kinds of fibers have been spirally processed, for example, corning
SMF-28 optical fiber [13, 14], less mode optical fiber [12, 15], photonic crystal fiber
[4, 16, 17], partial core optical fiber [18], etc., but there are few studies about YOFC fiber
single-mode. In this paper, YOFC single-mode fiber is spirally processed by a commer-
cial welding machine, and the relationship between the period and the resonant peak
is different from corning SMF-28 optical fiber presented in former reports [11]. They
also studied the transmission spectra variety with temperature. The sensitivity and lin-
earity of the resonant peak with temperature have an application potential.

2. Experiment

The YOFC single-mode fiber is spirally processed by a welding machine (Fujikura
FSM-100p+). Firstly, the electrode discharge calibration and motor calibration are car-
ried out on the commercial fusion splicer, when making electrode discharge calibra-
tion, Z axial motor is also calibrated. The distance between electrodes is 2.5 mm. As
shown in Fig. 1, the peeled off part of the coating layer of YOFC single-mode fiber and
the fiber are clamped by two optical fiber fixtures with slight tension. A special welding
mode is selected. The stepping motor selects a sweep model, which means that the op-
tical fiber fixture and the fiber between them are synchronous, moving with a constant
speed, and the stepping speed is set to 0.056 μm/ms. ZR motor is set to rotate clockwise,
and the rotation speed is 0.049°/ms. Electrode discharge power is set to –80 bit, running
time is set to 300000 ms. 

Figure 2a shows the processed H-LPFGs. The periods structure can clearly be seen
under light. The period is about 411 μm. But as shown in Fig. 2b, the fiber core, clad-
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Fig. 1. Schematic of the spiral processing employing a commercial fusion splicer.
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ding and surface morphology of the processed H-LPFGs have no obvious changes un-
der the microscope (Olympus CX23). It suggests that the periods structure shown in
Fig. 1b is caused by an uneven refractive index in spiral processing. Especially, the
cladding refractive index is modulated significantly, but the optical fiber has no obvi-
ous deformation. Of course, there would be some very tiny optical fiber deformations,
which have little effect on transmission spectra.

The period of the H-LPFGs is equal to the pitch of helix, which can be calculated by

(1)

where V  is stepping speed of sweep mode, θ is rotation speed of ZR motor. The grating
pitch of H-LPFGs is calculated by Eq. (1), which is 411.4 μm, and the total length has
about 40 periods.

Fig. 2. Photograph of the spiral processed fiber (a), and microscope photograph of the spiral processed
fiber (b). 
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Fig. 3. The transmission spectrum of the processed H-LPFG.
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The transmission spectrum is measured. The spectrometer is Yokogawa-AQ6370D.
The spectral range of a broadband light source is from 1400 to 1620 nm. The measured
transmission spectrum at room temperature is shown in Fig. 3. There is an obvious res-
onant peak near 1560 nm, and half peak width is about 25 nm. The depth of the resonant
peaks is closed to –26 dB, and the insert losses are very small.

3. Discussion

According to the long-period fiber grating coupled-mode theory [19–21], the guided
fundamental mode is coupled to the forward-propagating cladding modes, and leads
to the resonant peak. For the single-helix H-LPFG in a conventional SMF, the phase
-matching condition can be described as

(2)

(3)

where nF and nN are the effective refractive index of the fundamental mode and the
coupled m-th cladding modes, respectively. Λ is the period of the H-LPFGs. σ11 and
σ22 are dc coupling coefficients of the fundamental mode and the coupled m-th cladding
mode, respectively. λD is the design wavelength and λres is the resonant wavelength.
The diameter of the core, cladding, the refractive indexes of the core n1 and cladding n2,
are 9.3 µm, 125 µm, 1.4628, and 1.4573, respectively.

As shown in Fig. 4, the effective refractive index of the fundamental mode and the
cladding modes are calculated. Both the effective refractive index of the fundamental
mode and the cladding modes are monotonic decreasing with the increasing of wave-
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Fig. 4. The relationship between the effective refractive index and the wavelength in different modes. 
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length. According to Eqs. (2) and (3), the couple between the fundamental mode and
the LP14 mode can be calculated. The relation between the pitch length and the resonant
wavelength is shown in Fig. 5. The difference of dc coupling coefficient between the
fiber core and the cladding is 0.0008632. The pitch length increases with the increasing
of resonant wavelength. When the pitch length is 411 μm, the wavelength is around
1560 nm. This experimental result coincides with Fig. 5, which means that the resonant
wavelength in Fig. 3 is coupled by the fundamental mode and the 4th cladding mode.
The pitch lengths of 390 and 400 μm are also processed; the resonant wavelengths are
around 1500 and 1530 nm. 

The responsivities of the H-LPFG for the temperature with a broadband light source
and optical spectrum analyzer are measured. The temperature change from 30 to 150℃
and the transmission spectrum are measured at every 10℃. The results are shown in
Fig. 6; the resonant wavelength increased with the increase in temperature. The fitting
result is linear, the slope is 86 pm/℃. Compared with Ref. [9], the single-mode fiber
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Fig. 5. Pitch length vs. wavelength of coupling between fundamental mode Lp01 and cladding mode LP14.
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Fig. 6. Resonance wavelength vs. temperature.
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is different, and the coupling between the fundamental mode and the cladding mode
is also different. By the use of YOFC’s single-mode fiber, the slope is slightly larger
than Ref. [9], and the linearity is better than Ref. [9]. Because of easy inscription pro-
cess, it has potential applications in as a temperature sensor.

4. Conclusion

In conclusion, H-LPFGs of YOFC single-mode fiber is processed by a commercial
welding machine. The periods’ structure can be easily observed with a naked eye, and
no significant change is seen under a microscope. The period of processed H-LPFGs
is about 411 μm; the resonant wavelength is near 1560 nm. The resonance wavelength
is caused by coupling between the fundamental mode and the LP14 mode. The resonance
wavelength vs. temperature is studied The resonant wavelength increased linearly with
increasing temperature; the slope is 86 pm/℃. Therefore, it can be applied as a tem-
perature sensor.
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