Identyfikatory
Warianty tytułu
Możliwość prognozowania dopływu do zbiornika na podstawie danych GPS o zawartości pary wodnej
Języki publikacji
Abstrakty
We investigated the possibility of using GPS precipitable water vapour (GPS-PWV) for forecasting reservoir inflow. The correlations between monthly GPS-PWV and the inflow of two reservoirs were examined and the relationship tested, using a group method of data handling (GMDH) type neural network algorithm. The daily and monthly reservoir inflows were directly proportional to daily and monthly GPS-PWV trends. Peak reservoir inflow, however, shifted from the peak averages for GPS-PWV. A strong relationship between GPS-PWV and inflow was confirmed by high R2 values, high coefficients of correlation, and acceptable mean absolute errors (MAE) of both the daily and monthly models. The Ubon Ratana reservoir model had a monthly MAE of 54.19∙106 m3 and a daily MAE of 5.40∙106 m3. By comparison, the Lumpow reservoir model had a monthly MAE of 25.65∙106 m3 and a daily MAE of 2.62∙106 m3. The models using GPS-PWV as input data responded to extreme inflow better than traditional variables such that reservoir inflow could be predicted using GPS-PWV without using actual inflow and rainfall data. GPS-PWV, thus, represents a helpful tool for regional and national water management. Further research including more reservoirs is needed to confirm this preliminary finding.
W pracy przedstawiono wyniki badań możliwości użycia danych GPS o zawartości pary wodnej (GPS- -PWV) do prognozowania dopływu do zbiornika. Analizowano korelacje między miesięczną wartością GPS- -PWV a dopływem do dwóch zbiorników; zależność testowano, stosując algorytm sieci neuronowej, zwany metodą grupowania argumentów (GMDH). Dobowe i miesięczne dopływy do zbiorników były proporcjonalne do dobowych i miesięcznych trendów GPS-PWV. Maksymalny dopływ odbiegał jednak od maksymalnych średnich GPS-PWV. Silna zależność między GPS-PWV a dopływem została potwierdzona dużymi wartościami R2, wysokim współczynnikiem korelacji i akceptowalnym średnim błędem bezwzględnym (MAE) zarówno w modelu dobowym, jak i miesięcznym. W modelu dla zbiornika Ubon Ratana miesięczny błąd bezwzględny wynosił 54,19∙106 m3 a dobowy – 5,40∙106 m3. Dla porównania w modelu dla zbiornika Lumpow wartość miesięczna MAE wynosiła 25,65∙106 m3, a dobowa 2,62∙106 m3. Modele z wykorzystaniem GPS-PWV jako danych wejściowych reagowały lepiej niż tradycyjne zmienne na dopływ ekstremalny i dlatego dopływ do zbiornika można przewidzieć bez znajomości rzeczywistego dopływu i danych opadowych. GPS-PWV jest więc pomocnym narzędziem w regionalnej i narodowej gospodarce wodnej. Potrzebne są dalsze badania obejmujące większą liczbę zbiorników, aby potwierdzić prezentowane wyniki wstępne.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
161--171
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
- Sakon Nakhon Rajabhat University, Faculty of Science and Technology, Sakon Nakhon, Thailand
autor
- Khon Kaen University, Department of Agricultural Engineering, Agricultural Machinery and Postharvest Technology Center, 123 Mitraphab Road, Nai-Muang, Muang District, 40002 Khon Kaen, Thailand
Bibliografia
- ABDELLATIF M.E., OSMAN Y.Z., ELKHIDIR A.M. 2015. Comparison of artificial neural networks and autoregressive model for inflows forecasting of Roseires Reservoir for better prediction of irrigation water supply in Sudan. International Journal of River Basin Management. Vol. 13 p. 203–214.
- AKILAN A., AZEEZ K.K.A., BALAJI S., SCHUH H., SRINIVAS Y. 2015. GPS derived Zenith Total Delay (ZTD) observed at tropical locations in South India during atmospheric storms and depressions. Journal of Atmospheric and Solar-Terrestrial Physics. Vol. 125–126 p. 1–7.
- ASKNE J., NORDIUS H. 1987. Estimation of tropospheric delay for microwaves from surface weather data. Radio Science. Vol. 22 p. 379–386.
- BAI Y., CHEN Z., XIE J., LI C. 2016. Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models. Journal of Hydrology. Vol. 532 p. 193–206.
- BAILEY R.T., WIBLE T.C., ARABI M., RECORDS R.M., DITTY J. 2016. Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. Hydrological Processes. Vol. 30. Iss. 23 p. 4420–4433.
- BEVIS M., BUSINGER S., CHISWELL S., HERRING T.A., ANTHES R.A., ROCKEN C., WARE R.H. 1994. GPS Meteorology: Mapping zenith wet delays onto precipitable water. Journal of Applied Meteorology. Vol. 33 p. 379–386.
- BORDI I., RAZIEI T., PEREIRA L.S., SUTERA A. 2014. Ground-Based GPS measurements of precipitable water vapor and their usefulness for hydrological applications. Water Resources Management. Vol. 29. Iss. 2 p. 471–486.
- BORDI I., ZHU X., FRAEDRICH K. 2016. Precipitable water vapor and its relationship with the Standardized Precipitation Index: ground-based GPS measurements and reanalysis data. Theoretical and Applied Climatology. Vol. 123 p. 263–275.
- CHEN B., LIU Z. 2014. Analysis of precipitable water vapor (PWV) data derived from multiple techniques: GPS, WVR, radiosonde and NHM in Hong Kong. Lecture Notes in Electrical Engineering. Vol. 303 p. 159–175.
- CHOY S., WANG C.-S., YEH T.-K., DAWSON J., JIA M., KULESHOV Y. 2015. Precipitable water vapor estimates in the Australian Region from ground-based GPS Observations. Advances in Meteorology. Vol. 2015 p. 1–14.
- COLLISCHONN W., TUCCI C.E.M., CLARKE R.T., CHOU S.C., GUILHON L.G., CATALDI M., ALLASIA D. 2007. Medium-range reservoir inflow predictions based on quantitative precipitation forecasts. Journal of Hydrology. Vol. 344 p. 112–122.
- COULIBALY P., ANCTIL F., BOBÉE B. 2000. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. Journal of Hydrology. Vol. 230 p. 244–257.
- CUI Q., WANG X., LI C., CAI Y., LIANG P. 2016. Improved Thomas–Fiering and wavelet neural network models for cumulative errors reduction in reservoir inflow forecast. Journal of Hydro-environment Research. Vol. 13 p. 134–143.
- DAVIS J.L., HERRING T.A., SHAPIRO I.I., ROGERS A.E.E., ELGERED G. 1985. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Science. Vol. 20 p. 1593–1607.
- DEETER M.N. 2007. A new satellite retrieval method for precipitable water vapor over land and ocean. Geophysical Research Letters. Vol. 34. Iss. 2 pp. 5.
- DHI 2004. MIKE 11 User & reference manual. Hørsholm. Danish Hydraulic Institute pp. 510.
- EBTEHAJ I., BONAKDARI H., ZAJI A.H., AZIMI H., KHOSHBIN F. 2015. GMDH-type neural network approach for modeling the discharge coefficient of rectangular sharpcrested side weirs. Engineering Science and Technology, an International Journal. Vol. 18. Is. 4 p. 746–757.
- ELGERED G., DAVIS J.L., HERRING T.A., SHAPIRO I.I. 1991. Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay. Journal of Geophysical Research: Solid Earth. Vol. 96 p. 6541–6555.
- HERRING T.A., KING R.W., FLOYD M.A., MCCLUSKY S.C. 2015. GAMIT Reference Manual GPS Analysis at MIT Release 10.6. Massachusetts. Massachusetts Institute of Technology pp. 167.
- IVAKHNENKO A.G. 1971. Polynomial theory of complex systems. IEEE Transactions on Systems, Man and Cybernetics SMC-1 p. 364–378.
- JI D., SHI J., XIONG C., WANG T., ZHANG Y. 2017. A total precipitable water retrieval method over land using the combination of passive microwave and optical remote sensing. Remote Sensing of Environment. Vol. 191 p. 313–327.
- JOTHIPRAKASH V., KOTE A.S. 2011. Improving the performance of data-driven techniques through data preprocessing for modelling daily reservoir inflow. Hydrological Sciences Journal. Vol. 56 p. 168–186.
- KULESHOV Y., CHOY S., FU E.F., CHANE-MING F., LIOU Y.-A., PAVELYEV A.G. 2016. Analysis of meteorological variables in the Australasian region using ground- and space-based GPS techniques. Atmospheric Research. Vol. 176–177 p. 276–289.
- LEIMING M., FUHAI G., QIGIGE W., GUANGGIANG Z. 2012. Numerical weather prediction in Yangtze River Delta region with assimilation of AWS and GPS/PWV data. In: 2012 IEEE Symposium on Robotics and Applications (ISRA). Proceedings. 3–5.06.2012 Kuala Lumpur, Malaysia. Kuala Lumpur. IEE p. 741–743.
- LIANG H., CAO Y., WAN X., XU Z., WANG H., HU H. 2015. Meteorological applications of precipitable water vapor measurements retrieved by the national GNSS network of China. Geodesy and Geodynamics. Vol. 6 p. 135–142.
- LIMA L.M.M., POPOVA E., DAMIEN P. 2014. Modeling and forecasting of Brazilian reservoir inflows via dynamic linear models. International Journal of Forecasting. Vol. 30 p. 464–476.
- LLAMEDO P., HIERRO R., DE LA TORRE A., ALEXANDER P. 2017. ENSO-related moisture and temperature anomalies over South America derived from GPS radio occultation profiles: ENSO-related anomalies over South America. International Journal of Climatology. Vol. 37 p. 268–275.
- MAGAR R.B., JOTHIPRAKASH V. 2011. Intermittent reservoir daily-inflow prediction using lumped and distributed data multi-linear regression models. Journal of Earth System Science. Vol. 120 p. 1067–1084.
- MAGHRABI A., AL DAJANI H.M. 2013. Estimation of precipitable water vapour using vapour pressure and air temperature in an arid region in central Saudi Arabia. Journal of the Association of Arab Universities for Basic and Applied Sciences. Vol. 14 p. 1–8.
- NAMAOUI H., KAHLOUCHE S., BELBACHIR A.H., VAN MALDEREN R., BRENOT H., POTTIAUX E. 2017. GPS water vapor and its comparison with radiosonde and ERAInterim data in Algeria. Advances in Atmospheric Sciences. Vol. 34 p. 623–634.
- NAYAK P.C., VENKATESH B., KRISHNA B., JAIN S.K. 2013. Rainfall-runoff modeling using conceptual, data driven, and wavelet based computing approach. Journal of Hydrology. Vol. 493 p. 57–67.
- NOOR H., VAFAKHAH M., TAHERIYOUN M., MOGHADASI M. 2014. Hydrology modelling in Taleghan mountainous watershed using SWAT. Journal of Water and Land Development. No. 20 p. 11–18.
- PATRO S., CHATTERJEE C., MOHANTY S., SINGH R., RAGHUWANSHI N.S. 2009. Flood inundation modeling using MIKE FLOOD and remote sensing data. Journal of the Indian Society of Remote Sensing. Vol. 37 p. 107–118.
- SATOMURA M., SHIMONAKA E., UKEI K., SHIMADA S., KATO T., WU P., HASHIMOTO M., KINGPAIBOON S., THANA B. 2010. On the precipitable water vapor obtained by using GPS observations in Thailand (2001–2006). Geoscience Reports of the Shizuoka University p. 1–11.
- SOHN D.-H., PARK K.-D., WON J.-H., CHO J.-H., ROH K.-M. 2012. Comparison of the characteristics of precipitable water vapor measured by Global Positioning System and microwave radiometer. Journal of Astronomy and Space Sciences. Vol. 29 p. 1–10.
- SUPARTA W., ADNAN J., ALI M.A.M. 2012. Monitoring of GPS precipitable water vapor during the severe flood in Kelantan. American Journal of Applied Sciences. Vol. 9 p. 825–831.
- SUPARTA W., ISKANDAR A. 2012. Monitoring of GPS water vapor variability during ENSO events over the Borneo Region. Asian Journal of Earth Sciences. Vol. 5 p. 88–95.
- SUPARTA W., RAHMAN R. 2016. Spatial interpolation of GPS PWV and meteorological variables over the west coast of Peninsular Malaysia during 2013 Klang Valley flash flood. Atmospheric Research. Vol. 168 p. 205–219.
- TAGHI SATTARI M., YUREKLI K., PAL M. 2012. Performance evaluation of artificial neural network approaches in forecasting reservoir inflow. Applied Mathematical Modelling. Vol. 36 p. 2649–2657.
- TSUDA T., SATO K., REALINI E., OIGAWA M., IWAKI Y., SHOJI Y., SEKO H. 2013. A real-time monitoring system of precipitable water vapor (PWV) using a dense GNSS receiver network. Journal of Disaster Research. Vol. 8 p. 155–156.
- UANG-AREE P., KINGPAIBOON S., KHUANMAR K. 2014. Estimation of missing GPS precipitable water vapor data by zenith wet delay and meteorological data. Advanced Materials Research. Vol. 931–932 p. 703–708.
- UANG-AREE P., KINGPAIBOON S., KHUANMAR K. 2015. Determination of the dates of the southwest monsoon in northeastern Thailand from the data on precipitable water vapor obtained by GPS. Russian Meteorology and Hydrology. Vol. 40 p. 647–657.
- VALIPOUR M., BANIHABIB M.E., BEHBAHANI S.M.R. 2012. Monthly inflow forecasting using autoregressive artificial neural network. Journal of Applied Sciences. Vol. 12 p. 2139–2147.
- VALIPOUR M., BANIHABIB M.E., BEHBAHANI S.M.R. 2013. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. Journal of Hydrology. Vol. 476 p. 433–441.
- WANG W., CHAU K., XU D., CHEN X.-Y. 2015. Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD Decomposition. Water Resources Management. Vol. 29 p. 2655–2675.
- YEH T.-K., HONG J.-S., WANG C.-S., CHEN C.-H., CHEN K.-H., FONG C.-T. 2016. Determining the precipitable water vapor with ground-based GPS and comparing its yearly variation to rainfall over Taiwan. Advances in Space Research. Vol. 57 p. 2496–2507.
- ZEALAND C.M., BURN D.H., SIMONOVIC S.P. 1999. Short term streamflow forecasting using artificial neural networks. Journal of Hydrology. Vol. 214 p. 32–48.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dff0b19a-1c0c-49f0-b277-cecfdcb8f730