PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Tests of Cement and Slag Mortars with SBR Rubber Granulates in Terms of Ecotoxicity and Strength

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badania zapraw cementowych i żużlowych z granulatami gumowymi SBR pod względem ekotoksykologiczności i wytrzymałości
Języki publikacji
EN
Abstrakty
EN
Various solutions for the management of rubber waste from used tires are known. We encounter in particular tests of concrete mixtures and the finished product, in the literature. These tests are describing rheological, mechanical and durability properties, mainly. However, the high toxicity of rubber waste from car tires requires that such concrete be tested in terms of ecotoxicology. The paper presents the results of research on the use of three different SBR granulates as fillers in mortars with a slag or CEM IV cement binder. The focus was on the immobilization of harmful compounds from rubber granules in the binder mass. It was assumed that the construction product using mortar with rubber granules would be in contact with water. The mass share of granulates in mortars was 4.7%. The grain size of the granulates was up to 4 mm, mainly 1–3 mm. A decrease in the strength of mortars with the addition of granulates and no leaching of polycyclic aromatic hydrocarbons from mortars was demonstrated. The metals from the mortars were absorbed by the rubber, most probably. The strength of slag mortars was greater than cement mortars.
PL
Znane są różne rozwiązania zagospodarowania odpadów gumowych pochodzących ze zużytych opon, w literaturze napotykamy w szczególności na badania mieszanek betonowych i już gotowego wyrobu. Są to badania opisujące głównie właściwości reologiczne, mechaniczne i trwałościowe. Jednak duża toksyczność gumowych odpadów z opon samochodowych nakazuje badać taki beton pod względem ekotoksykologicznym. W pracy przedstawiono wyniki badań nad użyciem 3 różnych granulatów jako wypełniaczy zapraw ze spoiwem żużlowym lub cementowym CEM IV. Skupiono się na immobilizacji szkodliwych związków z granul gumowych w masie spoiwa. Założono, że wyrób budowlany z użyciem zaprawy z granulatem gumowym będzie miał kontakt z wodą. Masowy udział granulatów w zaprawach wynosił 4,7%. Uziarnienie granulatów wynosiło do 4 mm, głównie 1–3 mm. Wykazano spadek wytrzymałości zapraw z dodatkiem granulatów oraz brak wymywania wielopierścieniowych węglowodorów aromatycznych z zapraw. Metale z zapraw zostały zasorbowane przez gumę, w większości przypadków.
Rocznik
Strony
153--162
Opis fizyczny
Bibliogr. 49 poz., tab., wykr., zdj.
Twórcy
  • KOMAG Institute of Mining Technology, Pszczyńska 37, 44-101 Gliwice, Poland
  • Faculty of Civil Engineering, Silesian University of Technology, Akademicka 5, 41-100 Gliwice, Poland
  • KOMAG Institute of Mining Technology, Pszczyńska 37, 44-101 Gliwice, Poland
Bibliografia
  • 1. B. Grynkiewicz-Bylina, B. Rakwic, B. Słomka-Słupik, Tests of rubber granules used as artificial turf for football fields in terms of toxicity to human health and the environment. Sci. Rep. 12, 6683 (2022). https://doi.org/10.1038/s41598-022-10691-1
  • 2. B. Pilkington, A Closer Look at Mixing Rubber into Concrete. Available from 12-May-2022. https://www.azobuild.com/article.aspx?ArticleID=8543
  • 3. B. Pilkington, Tackling the Global Tire Waste Problem with Pretred. (2021). AZO CleanTech. Available online at: https://www.azocleantech.com/article.aspx?ArticleID=1227
  • 4. European Chemicals Agency ECHA. Opinion on an Annex XV Dossier Proposing Restrictions on Intentionally-Added Microplastics. Committee for Risk Assessment (RAC), Committee for Socio-economic Analysis (SEAC).ECHA/RAC/RES-O-0000006790-71-01/F, ECHA/SEAC/RES-O-0000006901-74-01/F (2020).
  • 5. S. Wagner, T. Hüffer, P. Klöckner, M. Wehrhahn, T. Hofmann, T. Reemtsma, Tire wear particles in the aquatic environment - A review on generation, analysis, occurrence, fate and effects. Water Res. 139, 83-100 (2018). https://doi.org/10.1016/j.watres.2018.03.051
  • 6. World Bank report “What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050” (World Bank, 2019). https://openknowledge.worldbank.org/server/api/core/bitstreams/92a50475-3878-5984-829e-0a09a6a9badc/content
  • 7. J. Xue, M. Shinozuka. Rubberized concrete: A green structural material with enhanced energy-dissipation capability. Constr. Build. Mater 42, 196-204 (2013). https://www.sciencedirect.com/science/article/pii/S0950061813000688?via%3Dihub
  • 8. A. Al-Balhawi, N.J. Muhammed, H.A. Mushatat, H.N.G. Al-Maliki, B. Zhang, Numerical Simulations on the Flexural Responses of Rubberised Concrete. Buildings 12(5):590 (2022). https://doi.org/10.3390/buildings12050590
  • 9. Z. Zarhri, W.R. Martinez, J.A.D. Lepe, R.E.V. Azamar, M.C. Juarez, B.B.P. Solis, 30 years of rubberized concrete investigations (1990-2020). A bibliometric analysis, Revista ALCONPAT 12 (1), 127-142 (2022). https://doi.org/10.21041/ra.v12i1.554
  • 10. N.N. Gerges, C.A. Issa, S.A. Fawaz, Rubber concrete: Mechanical and dynamical properties. Case Studies in Con. Mater. 9, e00184, ISSN 2214-5095 (2018). https://doi.org/10.1016/j.cscm.2018.e00184.
  • 11. B.H.A. Aleem, A.A.A. Hassan, Development of self-consolidating rubberized concrete incorporating silica fume, Constr. Build. Mater. 161, 389-397, ISSN 0950-0618 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.146
  • 12. Y. Jiang, S. Zhang, G. Xue, W. Wang, Compressive behavior of rubberized concrete under high strain rates. Structures 56, 104983, ISSN 2352-0124 (2023). https://doi.org/10.1016/j.istruc.2023.104983
  • 13. N. Yasser, A. Abdelrahman, M. Kohail, A. Moustafa, Experimental investigation of durability properties of rubberized concrete. Ain Shams Eng. Journal 14, 6, 102111, ISSN 2090-4479 (2023). https://doi.org/10.1016/j.asej.2022.102111
  • 14. D.F. Medina, C.H. Martínez, N.F. Medina, F. Hernández-Olivares, Durability of rubberized concrete with recycled steel fibers from tyre recycling in aggresive enviroments. Con. Build. Mater. 400, 132619 ISSN 0950-0618 (2023). https://doi.org/10.1016/j.conbuildmat.2023.132619
  • 15. Q. Guan, Y. Xu, J. Wang, Q.Wu, P. Zhang, Meso-scale fracture modelling and fracture properties of rubber concrete considering initial defects. Theoretical and Applied Fracture Mechanics 125, 103834, ISSN 0167-8442 (2023). https://doi.org/10.1016/j.tafmec.2023.103834
  • 16. H. Momotaz, M.M. Rahman, M.R. Karim, Y. Zhuge, X. Ma, P. Levett, Properties of the interfacial transition zone in rubberised concrete – an investigation using nano-indentation and EDS analysis. J. Build. Enging. 77, 107405, ISSN 2352-7102 (2023). https://doi.org/10.1016/j.jobe.2023.107405
  • 17. P.K. Maeijer, B. Craeye,J. Blom,L. Bervoets, Crumb Rubber in Concrete—The Barriers for Application in the Construction Industry. Infrastructures 6, 116 (2021). https://doi.org/10.3390/Infrastructures6080116
  • 18. V. Lapkovskis, V. Mironovs, A. Kasperovich, V. Myadelets, D. Goljandin, Crumb Rubber as a Secondary Raw Material from Waste Rubber: A Short Review of End-Of-Life Mechanical Processing Methods. Recycling 5, 32 (2020). https://doi.org/10.3390/recycling5040032
  • 19. ETRMA. European Tyre and Rubber Industry—Statistics; ETRMA: Brussels, Belgium, 2014.
  • 20. A. Kailash, V. Mrudul, M. Tajedini, P. G. Xavier, E. Bardasz, M.J. Green, H.Liang, Impacts of particles released from vehicles on environment and health. Tribology International 184, 108417 (2023). ISSN 0301-679X. https://doi.org/10.1016/j.triboint.2023.108417
  • 21. M. Sienkiewicz, J. Kucinska-Lipka, H. Janik, A. Balas, Progress in used tyres management in the European Union: A review. Waste Management 32, 10, 1742-1751 (2012). ISSN 0956-053X. https://doi.org/10.1016/j.wasman.2012.05.010
  • 22. B. Bocca, G. Forte, F. Petrucci, S. Costantini, P. Izzo, Metals contained and leached from rubber granulates used in synthetic turf areas. Science of The Total Environment 407(7), 2183-2190 (2009). https://doi.org/10.1016/j.scitotenv.2008.12.026
  • 23. M. Beausoleil, K. Price, C. Muller, Chemicals in outdoor artificial turf: A health risk for users. Public Health Branch. Montreal Health and Social Services Agency (2009). https://ncceh.ca/sites/default/files/Outdoor_Artificial_Turf.pdf
  • 24. E. Menichini, V. Abate, L. Attias, S. De Luca, A. di Domenico, I. Fochi, G. Forte, N. Iacovella, A. L. Iamiceli, P. Izzo, F. Merli, B. Bocca, Artificial-turf playing fields: Contents of metals, PAHs, PCBs, PCDDs and PCDFs, inhalation exposure to PAHs and related preliminary risk assessment. Science of the Total Environment 409, 23, 4950-4957 (2011). https://doi.org/10.1016/j.scitotenv.2011.07.042 (2011).
  • 25. F.P. Gomes, H.I. Mota, J.C.M. Bordado, M. Baião, G.M. Sarmento, J. Fernandes, V.M. Pampulim, M.L. Custódio, I. Veloso, Toxicological Assessment of Coated versus Uncoated Rubber Granulates Obtained from Used Tires for Use in Sport Facilities. Journal of the Air & Waste Management Association 60, 741–746 (2012). https://doi.org/10.3155/1047-3289.60.6.741
  • 26. M. Llompart, L. Sanchez-Prado, J. P. Lamas, C. Garcia-Jares, E. Roca, T. Dagnac, Hazardous organic chemicals in rubber recycled tire playgrounds and pavers, Chemosphere 90, 423-431 (2013). https://doi.org/10.1016/j.chemosphere.2012.07.053
  • 27. A. Niesłochowski, H. Deptuła, Environmental tests of playground surfaces containing recycled rubber granulate. Przegląd Budowlany 10, 41-44 (2017), in Polish. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-0b10a26c-5877-4dd2-93cc-0fb4d0c1783c
  • 28. M. Celeiro, T. Dagnac, M. Llompart, Determination of priority and other hazardous substances in football fields of synthetic turf by gas chromatography-mass spectrometry: A health and environmental concern. Chemosphere 195, 201-211 (2018). https://doi.org/10.1016/j.chemosphere.2017.12.063
  • 29. A.N. Perkins, S.H. Inayat-Hussain, N.C. Deziel, C.H. Johnson, S.S. Ferguson, R. Garcia-Milian, D. C. Thompson, V. Vasiliou, Evaluation of potential carcinogenicity of organic chemicals in synthetic turf crumb rubber. Environmental Research 169, 163–172 (2019). https://doi.org/10.1016/j.envres.2018.10.018
  • 30. F.O. Gomes, M.R. Rocha, A. Alves, N. Ratola, A review of potentially harmful chemicals in crumb rubber used in synthetic football pitches. Journal of Hazardous Materials 409, 124998, ISSN 0304-3894 (2021). https://doi.org/10.1016/j.jhazmat.2020.124998
  • 31. ECHA, Annex XV Report. An evaluation of the possible health risks of recycled rubber granules used as infill in synthetic turf sports fields. version 1.01. European Chemicals Agency (2017) https://echa.europa.eu/documents/10162/13563/annex-xv_report_rubber_granules_en.pdf/dbcb4ee6-1c65-af35-7a18-f6ac1ac29fe4
  • 32. A. Re Depaolini, G. Bianchi, D. Fornai, A. Cardelli, M. Badalassi, C. Cardelli, E. Davoli, Physical and chemical characterization of representative samples of recycled rubber from end-of-life tires. Chemosphere 184, 1320-1326 (2017). https://doi.org/10.1016/j.chemosphere.2017.06.093
  • 33. K. Formela, Waste tire rubber-based materials: Processing, performance properties and development strategies, Advanced Industrial and Engineering Polymer Research 5, 234-247 (2022). https://doi.org/10.1016/j.aiepr.2022.06.003
  • 34. European Parliament, Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006, OJ L 353, 31.12.2008, p. 1-1355 with further amendments, http://publications.europa.eu/resource/cellar/e3f31046-b274-11eb-8aca-01aa75ed71a1.0013.02/DOC_1 (accessed on 3 October 2023)
  • 35. A. Ociepa-Kubicka, Toxic effects of heavy metals on plants, animals and humans, Engineering and Environmental Protection 15, 2, 169-180 (2012), in Polish. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-LODD-0002-0015
  • 36. European Parliament, Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC, OJ L 396 30.12.2006, p. 1 with further amendments, https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02006R1907-20230806 (accessed on 3 October 2023)
  • 37. Council Decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC, OJ L 011 , 16.01.2003 p. 0027 – 0049, https:// eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32003D0033&qid=1696348429653 (accessed on 3 October 2023).
  • 38. E. Giergiczny, K. Góralna, Mielony granulowany żużel wielkopiecowy - dodatek do betonu typu II. Budownictwo Technologie Architektura 1 56-59 (2008). http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BTB2-0059-0097
  • 39. A.J. Kardos, S.A. Durham, Strength, durability, and environmental properties of concrete utilizing recycled tire particles for pavement applications. Con. Build. Mater. 98, 832-845 (2015). ISSN 0950-0618. https://doi.org/10.1016/j. conbuildmat.2015.08.065
  • 40. A.M. Mhaya , G.F. Huseien, A.R. Z. Abidin, M. Ismail, Long-term mechanical and durable properties of waste tires rubber crumbs replaced GBFS modified concretes. Con. Build. Mater. 256, 119505 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119505
  • 41. R. Wang, X. Shi, Influence of styrene-butadiene rubber latex on the early hydration of cement. Cement Wapno Beton 21/83, 1, 36-45 (2016). http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-de8defdf-2500-4a91-a30f-11fcfe4044fd?q=49062ca2-624b-4dc7-84f7-ee6233e45929$4&qt=IN_PAGE
  • 42. S. Tsuge H. Ohtani, W. Chuichi, Pyrolysis-GC/MS data book of synthetic polymers Programs, Thermograms and MS of Pyrolyzates, 1st Edition, 2011.
  • 43. J. Reichel, J. Graßmann, T. Letzel, J. E. Drewes, Systematic Development of a Simultaneous Determination of Plastic Particle Identity and Adsorbed Organic Compounds by Thermodesorption-Pyrolysis GC/MS (TD-Pyr-GC/MS). Molecules Oct 28;25(21), 4985 (2020). doi: 10.3390/molecules25214985. PMID: 33126488
  • 44. ISO 13320:2009 Particle size analysis-Laser diffraction methods. Publication date: 2009-10. Technical Committee: ISO/TC 24/SC 4 Particle characterization. ICS: 19.120 Particle size analysis. Sieving. Available online: https://www.iso.org/standard/44929.html (accessed on 6 January 2020).
  • 45. B. Słomka-Słupik, Self-Immobilizing Metals Binder for Construction Made of Activated Metallurgical Slag, Slag from Lignite Coal Combustion and Ash from Biomass Combustion. Materials 14, 3101 (2021) https://doi.org/10.3390/ma14113101.
  • 46. PN-EN ISO 12677:2011 Chemical Analysis of Refractory Products By X-Ray Fluorescence (XRF)-Fused Cast-Bead Method; PKN: Warsaw, Poland, 2011.
  • 47. PN-EN 196-1:2016-07 Metody badania cementu - Część 1: Oznaczanie Wytrzymałości (Cement Test Methods-Part 1: Determination of Strength); PKN: Warsaw, Poland, 2018.
  • 48. PN-EN 12457-4:2006 Charakteryzowanie odpadów -- Wymywanie -- Badanie zgodności w odniesieniu do wymywania ziarnistych materiałów odpadowych i osadów -- Część 4. PKN: Warszawa, 2006
  • 49. R. Baron, Determination of rare earth elements in power plant wastes, Min. Mach. 4, 164, 24-30 (2020) DOI 10.32056/KOMAG2020.4.3
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfed3258-0f03-4f00-b654-ac62f5cce841
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.