PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electromagnetic radiation attenuation materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The shielding electromagnetic (EM) waves is a very important field of the electronics, telecommunications and IT industries. The phenomenon of electromagnetic interference (EMI) can be a source of interference in electronic systems, which can both disrupt the operation of systems and provide a breach to intercept the flow of classified information. Hence, it is necessary to shield electronic and IT systems to prevent the coupling of circuits and prevent the monitoring of data emitted in the form of electromagnetic waves. An additional threat resulting from the EMI phenomenon is the possibility of inducing high voltages and currents in circuits that may temporarily or permanently damage electronic systems as a result of high-power electromagnetic pulses. Examples of sources of high-power impulses can be, for example, atmospheric discharges, gasoline engine ignition systems, electrostatic discharges, solar discharges, cosmic rays and military hardware, such as electromagnetic directed energy weapons. The paper will present the results of research carried out as part of interdisciplinary projects related to security threats to ICT systems in the area of critical infrastructure.
Rocznik
Tom
Strony
81--96
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Military University of Technology, Institute of Optoelectronics, Warsaw, Poland
  • Air Force Institute of Technology, Warsaw, Poland
  • Military University of Technology, Institute of Optoelectronics, Warsaw, Poland
  • Military University of Technology, Institute of Optoelectronics, Warsaw, Poland
  • Air Force Institute of Technology, Warsaw, Poland
  • Military University of Technology, Institute of Optoelectronics, Warsaw, Poland
Bibliografia
  • 1. Vass, S. (2004). Defense against electromagnetic pulse weapons. AARMS, 3(3), 443-457. Retrieved from https://studylib.net/doc/18079221/defense-against-electromagnetic-pulse-weapons.
  • 2. Benford, J., Swegle, J. A., and Schamiloglu, E. (2019). High Power Microwaves. Boca Raton, USA: CRC Press. ISBN 9780367871000.
  • 3. Ye, F., He, X., and Zheng, J. (2020). Effects of Multi-walled Carbon Nanotubes on the Microwave Absorbing Properties of Magnetorheological Elastomers. IOP Conference Series: Materials Science and Engineering, 774, 012115. DOI: 10.1088/1757-899X/774/1/012115.
  • 4. Singh, N., and Aul, D. G. (2022). Carbon Nanotubes based Composites for Electromagnetic Absorption - A Review. Current Applied Materials, 1 (1). DOI: 10.2174/2666731201666210803110914.
  • 5. Medeiros, I. L., Medeiros, F. C. N., Silva, B. F. G., Lima, A. G. R., Labat, A. G., Boss, N. F. A., and Baldan, R. M. (2022). Improved Microwave Absorption Performance with Sustainable Porous Carbon/Carbon Nanotube Composites. Materials Research, 25. DOI: 10.1590/1980-5373-MR-2022-0169.
  • 6. Huang, X., Yu, D., and Wang, S. (2022). Microwave Absorption Properties of Multi-Walled Carbon Nanotubes/Carbonyl Iron Particles/Polyurethane Foams. Materials, 15(16):5690. DOI: 10.3390/ma15165690.
  • 7. Alici, K. B., Bilotti, F., Vegni, L., and Ozbay, E. (2010). Experimental verification of metamaterial based subwavelength microwave absorbers. Journal of Applied Physics, 108, 083113. DOI: 10.1063/1.3493736.
  • 8. Saville, P. (2005) Review of Radar Absorbing Materials. Defence R&D Canada Atlantic, Technical Memorandum. Retrieved from https://apps.dtic.mil/sti/pdfs/ADA436262.pdf.
  • 9. Ianoz, M. (2013). A Review of HEMP Activities in Europe (1970-1995). IEEE Transactions On Electromagnetic Compatibility, 55, 412-421. DOI: 10.1109/TEMC.2013.2246793.
  • 10. Stuckenberg, D. Electromagnetic Pulse Treats to America’s Electric Grid. Over The Horizon Journal. Retrieved from https://othjournal.com/2019/08/27/electromagnetic-pulse-threats-to-americas-electric-grid-counterpoints-to-electric-power-research-institute-positions/.
  • 11. Gargama, H., Thakur, A. K., and Chaturvedi, S. K. (2016). Polyvinylidene fluoride/nanocrystalline iron composite materials for EMI shielding and absorption applications. Journal of Alloys and Compounds, 654, 209–215. DOI: 10.1016/j.jallcom.2015.09.059.
  • 12. Choi, I., Lee, D., and Lee, D.G. (2015). Radar absorbing composite structures dispersed with nano-conductive particles. Composite Structures, 122, 23–30. DOI: 10.1016/j.compstruct.2014.11.040.
  • 13. Xu, W., He, Y., Kong, P., Li, J., Xu, H., Miao, L., Bie, S., and Jiang, J. (2015). An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications. Journal of Applied Physics, 118, 184903. DOI: 10.1063/1.4934683.
  • 14. Breiss, H., Assal, E. A., Benzerga, R., Méjean, C., and Sharaiha, A. (2020). Long Carbon Fibers for Microwave Absorption: Effect of Fiber Length on Absorption Frequency Band. Micromachines, 11, 1081. DOI: 10.3390/mi1112108.
  • 15. Bhattacharyya, R., Prakash, O., Roy, S., Singh, P., Bhattacharya, K. T., Maiti, P., Bhattacharyya, S., and Das, S. (2019). Graphene oxide-ferrite hybrid framework as enhanced broadband absorption in gigahertz frequencies. Scientific Reports 9 (12111). DOI: 10.1038/s41598-019-48487-5.
  • 16. Głuszewski, W., Kubacki, R., and Rajkiewicz, M. (2017). Modyfikowane radiacyjnie kompozyty polimerowe w ochronie przed promieniowaniem mikrofalowym. Radiation modified polymer composites in protection from microwave radiation. Postępy Techniki Jądrowej, 60 Z.1. Retrieved from http://www.ichtj.waw.pl/ichtj/publ/REPOZYTORIUM/2017/artykuly/ptj2017no1p20.pdf
  • 17. Zhang, S. Y., Cao, Q. X., Xue, Y. R., and Zhou, Y. X. (2015). Microwave absorption performance of the absorber based on epsilon-Fe3N/epoxy and carbonyl iron/epoxy composites. Journal of Magnetism and Magnetic Materials, 374, 755–761. DOI: 10.1016/j.jmmm.2014.08.073.
  • 18. Ge, C., Wang, L., Liu, G., Xu, K., Wang, L., Zhang, L., and He, X. (2020). Electromagnetic and microwave absorption properties of iron pentacarbonyl pyrolysis-synthesized carbonyl iron fibers. RSC Advances, 10, 23702-23711. DOI: 10.1039/D0RA00222D.
  • 19. Gunwant, D., and Vedrtnam, A. (2021). Microwave absorbing properties of carbon fiber based materials: A review and prospective. Journal of Alloys and Compounds, 881, 160572. DOI: 10.1016/j.jallcom.2021.160572.
  • 20. Chen, C. C., Liang, F. W., Nien, H. Y., Liu, K. H., and Yang, B. R. (2017). Microwave absorbing properties of flake-shaped carbonyl iron/reduced graphene oxide/epoxy composites. Materials Research Bulletin, 96, 81-85. DOI: 10.1016/j.materresbull.2017.01.045.
  • 21. Bibi, M., Abbas, M. S., Ahmad, N., Muhammad, B., Iqbal, Z., Rana, A. U., and Khan U.S. (2017). Microwaves absorbing characteristics of metal ferrite/multiwall carbon nanotubes nanocomposites in X-band. Composites Part B: Engineering, 114, 139-148. DOI: 10.1016/j.compositesb.2017.01.034.
  • 22. Houbi, A., Aldashevich, A. Z., Atassi, Y., Telmanovna, B. Z., Saule, M., and Kubanych, K. (2021). Microwave absorbing properties of ferrites and their composites: A review. Journal of Magnetism and Magnetic Materials, 529, 167839. DOI: 10.1016/j.jmmm.2021.167839.
  • 23. Xiong, X., Ma, H., Mohammed, J., Mehrez, S., Alamri, S., Giang, T. H., and Hoi, T. H. (2022). High-performance microwave absorber based on carbon-fibers@TiO2@SrFe12O19@PANI composite. Ceramics International. 48 (19), 27420-27428. DOI: 10.1016/j.ceramint.2022.05.395.
  • 24. Hussein, I., Jehangir, S., Rajmohan, J. I., Haik, Y., Abdulrehman, T., Clément, Q., and Vukadinovic, N. (2020). Microwave Absorbing properties of metal functionalized CNT polymer composite for stealth applications. Scientific Reports, 10 (16013). DOI: 10.1038/s41598-020-72928-1.
  • 25. Elmahaishi, F.M., Azis, S.R., Ismail, I., and Muhammad, D. F. (2022). A review on electromagnetic microwave absorption properties: their materials and performance. Journal of Materials Research and Technology, 20, 2188-2220. DOI: 10.1016/j.jmrt.2022.07.140.
  • 26. Kompatybilność elektromagnetyczna – Poziomy dopuszczalne emisji ubocznych i odporności na narażenia elektromagnetyczne, NO-06-A200:2012.
  • 27. Kompatybilność elektromagnetyczna – Tłumienność obiektów ekranujących – Wymagania, NO-06-A201:2009.
  • 28. Kompatybilność elektromagnetyczna – Tłumienność obiektów ekranujących – Wymagania, NO-06-A201:2009/A1:2018.
  • 29. Kompatybilność elektromagnetyczna – Obiekty ekranujące – Wymagania konstrukcyjne, NO-06-A203:2012.
  • 30. Staniec, K., Jóskiewicz, Z., Janukiewicz, J. and Więckowski, T. (2020). Review of applications of the Laboratory for Electromagnetic Compatibility infrastructure. International Journal of Electronics and Telecommunications, 66(1), 107-123. DOI: 10.24425/ijet.2020.131852.
  • 31. Kubacki, R., Lipińska, L., Przesmycki, R. and Laskowski, D. (2022). The Comparison of Microwave Reflectance of Graphite and Reduced Graphene Oxide Used for Electronic Devices Protection. Energies, 15, 651. DOI: 10.3390/en15020651.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfea3513-5eee-4779-b043-04fd15e5460f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.