PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Underwater Human Arm Manipulator – System Calibration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Controlling a remotely operated underwater vehicle (ROV) is an extremely challenging task that requires precise maneuvering and navigation in complex and often unpredictable environments. The operator faces numerous difficulties, including limited visibility and communication constraints, and the need to interpret data from various sensors. This paper describes a method for calibration of a wearable system equipped with inertial measurement unit (IMU) sensors that control the underwater manipulators. To implement a solution that allows the robot to be controlled by the operator's hand movements, it is necessary to measure the movement of the arm. This task is carried out using the IMU sensors, which are mounted in appropriate places on the ROV operator's suit to allow mapping the movement of his/her upper limbs. These movements are transferred to the manipulator's arms on the ROV, making it possible to interact with the environment by - manipulating objects under-water.
Twórcy
  • Department of Automatic Control and Robotics, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
autor
  • Department of Automatic Control and Robotics, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
  • Department of Automatic Control and Robotics, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
  • Department of Automatic Control and Robotics, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
  • Department of Automatic Control and Robotics, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
  • SR Robotics Sp. z o.o., ul. Lwowska 38, 40-389 Katowice, Poland
Bibliografia
  • 1. Siciliano, B., Khatib, O. Springer handbook of robotics, vol. 200 (Springer).
  • 2. Holubek, R., Ružarovský, R., Sobrino, D.R.D. 2019. An innovative approach of industrial robot programming using virtual reality for the design of production systems layout. In Advances in Manufacturing II: Volume 1-Solutions for Industry 4.0 (Springer), 223–235.
  • 3. Abdi, E., Kulic ́ , D., Croft, E. 2020. Haptics in teleoperated medical interventions: Force measureent, haptic interfaces and their influence on user’s performance. IEEE Transactions on Biomedical Engineering 67, 3438–3451.
  • 4. Lv, H., Kong, D., Pang, G., Wang, B., Yu, Z., Pang, Z., et al. 2022. Gulim: A hybrid motion mapping technique for teleoperation of medical assistive robot in combating the covid-19 pandemic. IEEE Transactions on Medical Robotics and Bionics 4, 106–117.
  • 5. Chowdhury, A.A., Hamid, M.A., Ivan, M.N.A.S. 2021. Implementation of cost effective bomb defusing robot with live streaming dual camera interface. In 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST) (IEEE), 439–444.
  • 6. Wang, Z., Lam, H.-K., Xiao, B., Chen, Z., Liang, B., Zhang, T. 2020. Event-triggered prescribed-time fuzzy control for space teleoperation systems subject to multiple constraints and uncertainties. IEEE Transactions on Fuzzy Systems 29, 2785–2797.
  • 7. Chen, H., Liu, Z. 2021. Time-delay prediction-based smith predictive control for space teleoperation. Journal of Guidance, Control, and Dynamics 44, 872–879.
  • 8. Xia, P., You, H., Ye, Y., Du, J. 2023b. Rov teleoperation via human body motion mapping: Design and experiment. Computers in Industry 150, 103959 .
  • 9. Padrao, P., Fuentes, J., Kaarlela, T., Bayuelo, A., Bobadilla, L. 2023. Towards optimal human-robot interface design applied to underwater robotics teleoperation. arXiv preprint arXiv:2304.02002.
  • 10. Young, S.N., Peschel, J.M. 2020. Review of human–machine interfaces for small unmanned systems with robotic manipulators. IEEE Transactions on Human-Machine Systems 50, 131–143. doi:10.1109/THMS.2020.2969380
  • 11. Xia, P., You, H., Du, J. 2023a. Visual-haptic feedback for rov subsea navigation control. Automation in Construction 154, 104987. doi:https://doi.org/10.1016/j.autcon.2023.104987
  • 12. Schleer, P., Kaiser, P., Drobinsky, S., Radermacher, K. 2020. Augmentation of haptic feedback for teleoperated robotic surgery. Int J Comput Assist Radiol Surg. 15(3), 515–529. doi:https://doi.org/10. 1007/s11548-020-02118-x
  • 13. Sivčev, S., Coleman, J., Omerdić, E., Dooly, G., Toal, D. 2018. Underwater manipulators: A review. Ocean Engineering 163, 431–450.
  • 14. Wang, J., Wang, S., and Leng, W. 2021. Vision positioning-based estimation method and its simulation studies on state of underwater manipulator. Mathematical Problems in Engineering Article ID 6656928, 12.
  • 15. Grzejszczak, T., Babiarz, A., Bieda, R., Jaskot, K., Kozyra, A., Ściegienka,P. 2020. Selection of methods for intuitive, haptic control of the underwater vehicle’s manipulator. In: Advanced, Contemporary Control: Proceedings of KKA 2020, the 20th Polish Control Conference, Łódź, Poland, 2020 (Springer), 508–519.
  • 16. Kim, T.W., Marani, G., Yuh, J. 2016. Underwater Vehicle Manipulators (Cham: Springer International Publishing), 407–422.
  • 17. Rybnikár, F., Kačerová, I., Hořejší, P., Šimon, M. 2022. Ergonomics evaluation using motion capture technology – literature review. Applied Sciences, 13, 162.
  • 18. Škulj, G., Vrabič, R., Podržaj, P. 2021. A wearable imu system for flexible teleoperation of a collaborative industrial robot. Sensors 21, 5871.
  • 19. Zhao, X., Ma, Y., Huang, J., Zheng, J., Dong, Y. 2021. An adaptive real-time gesture detection method using emg and imu series for robot control. In 2021 IEEE International Conference on Unmanned Systems (ICUS) (IEEE), 539–547.
  • 20. Kulkarni, P., Illing, B., Gaspers, B., Brüggemann, B., Schulz, D. IMU based gesture recognition for mobile robot control using online lazy neighborhood graph search. In: Proc. ISMCR 2018, 21th International Symposium on Measurement and Control in Robotics.
  • 21. Jaskot, K., Babiarz, A. 2010. The inertial measurement unit for detection of position; układ inercyjny do pomiaru orientacji obiektów. Przeglad Elektrotechniczny 86, 323–333.
  • 22. Grygiel, R., Bieda, R., Wojciechowski, K. 2014. Angles from gyroscope to complementary filter in imu. Przeglad Elektrotechniczny 90, 217–224.
  • 23. Bieda, R., Jaskot, K. 2016. Determinig of an object orientation in 3D space using direction cosine matrix and non-stationary Kalman filter. Archives of Control Sciences 26, 223–244.
  • 24. Roetenberg, D., Luinge, H., Slycke, P., et al. 2009. Xsens mvn: Full 6dof human motion tracking using miniature inertial sensors. Xsens Motion Technologies BV, Tech. Rep 1, 1–7.
  • 25. Kim, S., Kim, M. 2023. Rotation representations and their conversions. IEEE Access 11, 6682–6699.
  • 26. Wahba, G. 1965. A least squares estimate of satellite attitude. SIAM Review 7, 409–409.
  • 27. Veldpaus, F., Woltring, H., Dortmans, L. 1988. A least-squares algorithm for the equiform transformation from spatial marker co-ordinates. Journal of Biomechanics 21, 45–5.
  • 28. Yang, H., Carlone, L. 2019. A quaternion-based certifiably optimal solution to the wahba problem with outliers. IEEE/CVF International Conference on Computer Vision (ICCV), 1665–1674.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfe96e40-54e7-4829-8b40-7310ea5b828e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.