Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the wire drawing process, the wire is subjected to sharpening before each drawing. Traditional methods for sharpening wires involve one of the following techniques: crimping, grinding, rolling, chemical etching, or stretching within a furnace. Wire sharpening becomes especially difficult in the manufacture of ultra-thin wire. This study proposes and examines a novel technique for sharpening thin and ultra-thin wires through specialized stretching in a furnace. This study proposes and investigates a new technique for sharpening thin and ultra-thin wires based on stretching them in the furnace. Using a rheology-based concept of wire deformation during stretching, this study offers a substantial enhancement in the maximum attainable thinning of the wire during sharpening. Technically, this advancement is achieved by transitioning from a single-stage stretching process to an incremental one, characterized by small increments of deformation at each stage. In addition to incremental stretching, the proposed method includes simultaneous movement of the wire through a continuous micro furnace, repeated at each stage of elongation, which achieves thinning of the wire end of a given length. This study theoretically and experimentally explores further potentialities of this approach concerning the fabrication of ultra-thin wire. The findings show that the effectiveness of the proposed method strongly depends on the shape of the stress-strain curve of the wire material. For example, the conducted research demonstrated that this method is more effective for brass than for copper wire.
Rocznik
Tom
Strony
art. no. e153425
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] A.M. Baldini et al., “Detailed analysis of chemical corrosion of ultra-thin wires used in drift chamber detectors,” J. Instrum., vol. 16, no. 12, p. T12003, 2021, doi: 10.1088/1748-0221/16/12/t12003.
- [2] “Micro electronics.” Eurodrut. [Online]. Available: https://www.eurodrut.pl/en/products/winding-wires/ultrathin-wires/ (accessed Aug. 22, 2024).
- [3] “Micro-soldering.” Katemedia Marcin Gola. [Online]. Available: https://katemedia.pl/en/chemistry-for-electronics/820-ultra-thin-wire-0018mm-solder-wire.html (accessed Aug. 22, 2024).
- [4] “Medical used of thin wires.” Nippon Steel SG Wire co., LTD. [Online]. Available: https://www.sgw.nipponsteel.com/en/products/narrow_wire.html (accessed Aug. 22, 2024).
- [5] A. Bischoff and F. Aldinger, “Ultra-thin wire for semiconductor connections,” US Patent, US4355082A, 1982 [Online]. Available: https://patents.google.com/patent/US4355082A/en
- [6] P. Kumar and D.G. Agnihotri, “Cold drawing process – a review,” Int. J. Eng. Res. Appl., vol. 3, no. 3, pp 988–994, 2013.
- [7] S. Di Donato, L. Donati, and M. Negozio, “Copper wire multi-pass drawing: Process modeling and optimization,” Key Eng. Mater., vol. 926, pp. 499–510, 2022, doi: 10.4028/p-g4wbpz.
- [8] S. Frank, S. Gneiger, and E. Neunteufl, “Wire based additive manufacturing of Mg alloys,” in 76th Annual IMA World Magnesium Conference, Budapest, 2019.
- [9] A. Milenin and P. Kustra, “Mathematical model of warm drawing process of magnesium alloys in heated dies,” Steel Res. Int., vol. 81, no. 9, pp. 1251–1254, 2010.
- [10] “Esteves – drawing dies.” Estevesgroup. [Online]. Available: https://www.estevesgroup.com/products/wire-drawing-dies (accessed Aug. 29, 2024).
- [11] E. Felder, C. Levrau, M. Mantel, and N.G.T. Dinh, “Experimental study of the lubrication by soaps in stainless steel wire drawing,” Proc. Inst. Mech. Eng. Part J-J. Eng. Tribol., vol. 225, no. 9, pp. 915–923, Sep. 2011, doi: 10.1177/1350650111415931.
- [12] X.Y. Liu and S.H. Zhang, “The design of a drawing die based on the logistic function for the energy analysis of drawing force,” Appl. Math. Model., vol. 109, pp. 833–847, 2022, doi: 10.1016/j.apm.2022.05.019.
- [13] “Sharpening machine.” JACOM Strategic allies. [Online]. Available: https://jacomgroup.com/wire-drawing-machine/ (accessed Aug. 22, 2024).
- [14] “Drawng technology.” The Contenti Company. [Online]. Available: https://contenti.com/resources/wire-drawing-process (accessed Aug. 22, 2024).
- [15] P. Kustra, Numeryczne modelowanie za pomocą MES procesu ciągnienia drutów z niskoplastycznych stopów magnezu do wykorzystania w chirurgii, AGH University of Science and Technology, Kraków, 2011.
- [16] “Sharpening machine.” Alibaba.com. [Online]. Available: https://www.alibaba.com/product-detail/Wire-pointing-machine-wire-sharpening-machine_60379555998.html (accessed Aug. 29, 2024).
- [17] V. Weiss and R.A. Kot, “Dieless wire drawing with transformation plasticity,” Wire J., vol. 9, no. 9, pp. 182–189, 1969.
- [18] T. Furushima and K. Manabe, “A novel superplastic dieless drawing process of ceramic tubes,” CIRP Ann., vol. 66, no. 1, pp. 265–268, 2017, doi: 10.1016/j.cirp.2017.04.118.
- [19] A. Milenin, M. Wróbel, and P. Kustra, “Investigation of the workability and surface roughness of thin brass wires in various dieless drawing technologies,” Arch. Civ. Mech. Eng., vol. 22, no. 1, p. 10, 2022, doi: 10.1007/s43452-021-00331-2.
- [20] Y. Li, N. R. Quick, and A. Kar, “Dieless laser drawing of fine metal wires,” J. Mater. Process. Technol., vol. 123, no. 3, pp. 451–458, May 2002, doi: 10.1016/S0924-0136(02)00110-3.
- [21] P. Tiernan and M. T. Hillery, “Dieless wire drawing—an experimental and numerical analysis,” J. Mater. Process. Technol., vol. 155–156, no. 1–3, pp. 1178–1183, Nov. 2004, doi: 10.1016/j.jmatprotec.2004.04.175.
- [22] S. Supriadi, T. Furushima, and K.-I. Manabe, “Development of precision profile control system with fuzzy model and correction function for tube dieless drawing,” J. Solid Mech. Mater. Eng., vol. 5, no. 12, pp. 1059–1070, 2011, doi: 10.1299/jmmp.5.1059.
- [23] Y. Yi, K. Shinomiya, R. Kobayashi, H. Komine, S. Yoshihara, and T. Furushima, “A novel superplastic dieless drawing using fracture phenomenon for fabrication of metal tubular microneedles,” CIRP Ann., vol. 71, no. 1, pp. 237–240, Jan. 2022, doi: 10.1016/J.CIRP.2022.03.037.
- [24] M. Braatz, J. Bohlen, and N. Ben Khalifa, “Process window and mechanical properties for thin magnesium- and zinc-wires in dieless wire drawing,” Int. J. Mater. Form., vol. 17, no. 5, p. 46, 2024, doi: 10.1007/s12289-024-01848-6.
- [25] P. Du, S. Furusawa, and T. Furushima, “Continuous observation of twinning and dynamic recrystallization in ZM21 magnesium alloy tubes during locally heated dieless drawing,” J. Magnes. Alloy., vol. 10, no. 3, pp. 730–742, Mar. 2022, doi: 10.1016/j.jma.2021.06.001.
- [26] P. Du, T. Kishimoto, and T. Furushima, “Uniforming outer diameter by control of microstructural evolution for biodegradable ZM21 magnesium alloy tube during dieless drawing,” J. Mater. Process. Technol., vol. 312, p. 117831, Mar. 2023, doi: 10.1016/j.jmatprotec.2022.117831.
- [27] A. Milenin, M. Wróbel, P. Kustra, and J. Němeček, “Experimental and numerical study of surface roughness of thin brass wire processed by different dieless drawing processes,” Materials, vol. 15, no. 1, Dec. 2021, doi: 10.3390/ma15010035.
- [28] A. Milenin, “Rheology-based approach of design the dieless drawing processes,” Arch. Civ. Mech. Eng., vol. 18, no. 4, pp. 1309–1317, 2018, doi: 10.1016/j.acme.2018.04.003.
- [29] A. Considère, “Mémoire sur l’emploi du fer et de l’acier dans les constructions,” Ann. des Ponts Chaussées, vol. 34, no. 2, pp. 574–595, 1885.
- [30] R.N. Wright and E.A. Wright, “Basic analysis of dieless drawing,” Wire J. Int., vol. 33, pp. 138–143, 2000.
- [31] O.I. Bylya, M.K. Sarangi, N. Rohit, A. Nayak, R.A. Vasin, and P.L. Blackwell, “Simulation of the Material Softening During Hot Metal Forming,” Arch. Metall. Mater., vol. 60, no. 3, pp. 1887–1893, Sep. 2015, doi: 10.1515/amm-2015-0322.
- [32] O.I. Bylya, T. Khismatullin, P. Blackwell, and R.A. Vasin, “The effect of elasto-plastic properties of materials on their formability by flow forming,” J. Mater. Process. Technol., vol. 252, pp. 34–44, Feb. 2018, doi: 10.1016/j.jmatprotec.2017.09.007.
- [33] G.D. Slomchack, A.A. Milenin, I. Mamuzić, and F. Vodopivec, “A mathematical model of the formation of the plastic deformation zone in the rolling of rheologically complex metals and alloys,” J. Mater. Process. Technol., vol. 58, no. 2–3, pp. 184–188, Mar. 1996, doi: 10.1016/0924-0136(95)02099-3.
- [34] A. Milenin, T. Furushima, P. Du, and V. Pidvysots’kyy, “Improving the workability of materials during the dieless drawing processes by multi-pass incremental deformation,” Arch. Civ. Mech. Eng., vol. 20, no. 86, pp. 1–14, 2020, doi: 10.1007/s43452-020-00092-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfe84e7a-99e7-45f3-93e2-0407e4762798
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.