PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Induction machine behavioral modeling for prediction of EMI propagation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of wideband behavioral modeling of an induction machine (IM). The proposed solution enables modeling the IM differential- and common-mode impedance for a frequency range from 1 kHz to 10 MHz. Methods of parameter extraction are derived from the measured IM impedances. The developed models of 1.5 kW and 7.5 kW induction machines are designed using the Saber Sketch scheme editor and simulated in the SABER simulator. Modeling validation is based on prediction of electromagnetic interference (EMI) emissions of common-mode and differential-mode current spectra of experimental inverter-fed IM drives.
Rocznik
Strony
247--254
Opis fizyczny
Bibliogr. 22 poz., rys., wykr., tab.
Twórcy
  • Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 11/12 Narutowicza St., 80-233 Gdańsk, Poland
Bibliografia
  • [1] S. Bartos, I. Dolezel, J. Necesany, J. Skramlik, and V. Valouch, “Electromagnetic interferences in inverter-fed induction motor drives”, International Conference on Renewable Energies and Power Quality, (2008).
  • [2] H. Miloudi, A. Bendaoud, K. Mendaz, M. Benhadjla, A. Gourbi, and M. Brahami, “Modeling of differential-mode and common- mode characteristics for EMI/EMC analysis applied to a high-frequency induction motor”, IV International Symposium on Power Quality SICEL-2007 19, (2007).
  • [3] R. Smoleński, “Selected conducted electromagnetic interference issues in distributed power systems”, Bull. Pol. Ac.: Tech. 57 (4), 383-393 (2009).
  • [4] R. Smoleński, M. Jarnut, G. Benysek, and A. Kempski, “CM voltage compensation in AC/DC/AC interfaces for smart grids”, Bull. Pol. Ac.: Tech. 59 (4), 513-523 (2011).
  • [5] A. Roc’h, Behavioural Models for Common-Mode EMI Filters, PhD Thesis, University of Twente, Enschede, 2012.
  • [6] J. Itoh, T. Araki, and K. Orikawa, “Experimental verification of an EMC filter used for PWM inverter with wide band-gap devices”, International Power Electronics Conference IPEC, Hiroshima, Japan, 1925-1932 (2014).
  • [7] B. Revol, J. Roudet, J.L. Schanen, and P. Loizelet, “EMI study of a three phase inverter-fed motor drives”, 39th IAS Annual Meeting Industry Applications Conference 4, 2657-2664 (2004).
  • [8] M. Turzynski and W.J. Kulesza, “A simplified behavioral mosfet model based on parameters extraction for circuit simulations”, IEEE Trans. on Power Electronics 31 (4), 3096-3105 (2016).
  • [9] N. Bondarenko, Electromagnetic Compatibility in Power Inverter Design, PhD Thesis, Missouri University of Science and Technology, 2015.
  • [10] P. Musznicki, M. Turzyński, and P.J. Chrzan, “Accurate modeling of quasi-resonant inverter fed IM drive”, 39th Annual Conference of the IEEE Industrial-Electronics-Society (IECON), 376-381 (2013).
  • [11] E. Zhong and T.A. Lipo, “Improvements in EMC performance of inverter-fed motor drives”, IEEE Trans. on Industry Applications 31 (6), 1247-1256 (1995).
  • [12] A. Boglietti and E. Carpaneto, “Induction motor high frequency model”, Thirty-Fourth IAS IEEE Industry Applications Conference 3, 1551-1558 (1999).
  • [13] F. Della Torre, S. Leva, and A.P. Morando, “Three‐phase distributed constants model of induction machines for EMC and surge propagation studies”, COMPEL - International Journal for Computation and Mathematics in Electrical and Electronic Engineering 27 (4), 770-779 (2008).
  • [14] S.-P. Weber, E. Hoene, S. Guttowski, W. John, and H. Reichl, “Modeling induction machines for EMC-Analysis”, IEEE 35th Annual Power Electronics Specialists Conference PESC 04 1, 94-98 (2004).
  • [15] G. Grandi, D. Casadei, and U. Reggiani, “Equivalent circuit of mush wound AC windings for high frequency analysis”, IEEE International Symposium on Industrial Electronics 1, Guimaraes, Portugal, 201-206 (1997).
  • [16] G. Grandi, D. Casadei, and A. Massarini, “High frequency lumped parameter model for AC motor windings”, European Conference on Power Electronics and Applications, Trondheim, Norway, (1997).
  • [17] G. Grandi, D. Casadei, and U. Reggiani, “Analysis of commonand differential-mode HF current components in PWM inverter- fed AC motors”, 29th Annual IEEE Power Electronics Specialists Conference 2, 1146-1151 (1998).
  • [18] G. Grandi, D. Casadei, and U. Reggiani, “Common- and differential- mode HF current components in AC motors supplied by voltage source inverters”, IEEE Trans. Power Electron. 19 (1), 16-24 (2004).
  • [19] S. Kim and D.P. Neikirk, “Compact equivalent circuit model for the skin effect”, IEEE MTT-S International Microwave Symposium Digest 3, 1815-1818 (1996).
  • [20] Find Minimum of Unconstrained Multivariable Function Using Derivative-Free Method - MATLAB fminsearch, http://www.mathworks.com/help/matlab/ref/fminsearch.html, (2016).
  • [21] GNU Octave: Minimizers, https://www.gnu.org/software/octave/doc/v4.0.1/Minimizers.html, (2016).
  • [22] M Turzyński, Behavioral Modeling of IGBT Transistors for Simulation of Power Electronics, Wydawnictwo Politechniki Gdańskiej, Gdańsk, 2012, [in Polish].
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfe80a11-4667-4d85-9264-bc347f93943c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.