PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of digital image correlation in the study of Achilles tendon strain field

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie cyfrowej korelacji obrazów w badaniach pola odkształceń ścięgna Achillesa
Języki publikacji
EN
Abstrakty
EN
This paper presents an application of a vision-based measurement method in the experimental mechanics of biological materials. The displacement and strain fields of a human Achilles tendon specimen under a tensile test were computed using the digital image correlation method. Different software applications, both commercial and open source, were compared. The performance of algorithms was tested based on a referential measurement earned out by commercial software with the affine model of deformation implemented. The root mean square error of the difference between strain obtained using the reference measurement and each of the analyzed programs was computed. Additionally, an example of a full-field computation of displacement and strain field was presented.
PL
Artykuł przedstawia zastosowanie pomiarów wizyjnych w mechanice eksperymentalnej badającej właściwości materiałów biologicznych. Pole przemieszczeń i odkształceń ludzkiego ścięgna Achillesa uzyskane podczas statycznej próby rozciągania zostało wyznaczone za pomocą algorytmu cyfrowej korelacji obrazów. Porównano kilka wybranych programów komputerowych, zarówno komercyjnych, jak i darmowych, realizujących pomiar za pomocą metody korelacji Skuteczność algorytmów była testowana na podstawie wyników referencyjnych, otrzymanych z komercyjnego programu, w którym została zaimplementowana korelacja oparta na deformowalnym modelu afinicznym. Wyznaczono błędy średniokwadratowe różnicy pomiędzy danymi referencyjnymi a danymi otrzymanymi z każdego z testowanych programów. Dodatkowo pokazano przykład uzyskanego pola przemieszczeń i odkształceń na całej powierzchni testowanej próbki.
Rocznik
Strony
19--26
Opis fizyczny
Bibliogr. 16 poz., rys., wykr., tab.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Robotics and Mechatronics, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Robotics and Mechatronics, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Robotics and Mechatronics, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Robotics and Mechatronics, Krakow, Poland
  • Jagiellonian University Medical College, Department of Anatomy, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Robotics and Mechatronics, Krakow, Poland
Bibliografia
  • 1. Arampatzis A., Peper A., Bierbaum S., Albracht K., 2010, Plasticity of human Achilles tendon mechanical and morphological properties in response to cyclic strain. Journal of Biomechanics 43, 3073-3079.
  • 2. Bagheri Z.S., El Sawi I., Bougherara H., Zdero R., 2015, Biomechani-cal fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography. Journal of the Mechanical Behavior of Biomedi-cal Materials 35, 27-38.
  • 3. Bayliss A.J., Weatherholt A.M., Crandall T.T., Farmer D.L., McConnell J.C., Crossley K.M., Warden S.J., 2016, Achilles tendon material properties are greater in the jump leg of jumping athletes. Journal of Musculoskelet and Neuronal Interactions 16(2), 105-112.
  • 4. Cyganik Ł., Binkowski M., Kokot G., Rusin T., Popik P., Bolechała R, Nowak R., Wróbel Z., John A., 2014, Prediction of Young's modulus of trabeculae in microscale using macro-scale's relationships between bone density and mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials 36, 120-134.
  • 5. Gillard P., Boardman R., Mavrogordato M., Hollis D., Sinclair I., Pierrona P., Browne M., 2014, The application of digital volume correlation (DVC) to study the microstructural behaviour of trabecular bone during compression. Journal of the Mechanical Behavior of Biomedical Materials 29, 480-499.
  • 6. Helfenstein-Didier C, Andrade R.J., Brum J., Hug R, Tanter M., Nordez A., Gennisson J.L., 2016, In vivo quantification of the shear modulus of the human Achilles tendon during passive loading using shear wave dispersion analysis. Physics in Medicine and Biology 61, 2485-2496.
  • 7. Koh I., Lopez A., Helgason B., Ferguson S.J., 2014, The compressive modulus and strength of saturated calcium sulphate dihydrate cements: implications for testing standards. Journal of the Mechanical Behavior of Biomedical Materials 34, 187-198.
  • 8. Latifi N., Miri A.K., Mongeau L., 2014, Determination of the elastic properties of rabbit vocal fold tissue using uniaxial tensile testing and a tailored finite element model. Journal of the Mechanical Behavior of Biomedical Materials 39, 366-374.
  • 9. Ma S.P, Jin G.C., 2003, New correlation coefficients designed for digital speckle correlation method (DSCM). Proceedings of SPIE - The International Society for Optical Engineering 5058, 25-33.
  • 10. Obst S.J., Newsham-West R., Barrett R.S., 2016, Changes in Achilles tendon mechanical properties following eccentric heel drop exercise are specific to the free tendon. Scandinavian Journal of Medicine and Science in Sports 26, 421-431.
  • 11. Pan B., Xie H., Xu B., Dai R, 2006, Performance of sub-pixel registration algorithms in digital image correlation. Measurement Science and Technology 17, 1615-1621.
  • 12. Rashid B., Destrade M., Gilchrist M.D., 2014, Mechanical characterization of brain tissue in tension at dynamic strain rates. Journal of the Mechanical Behavior of Biomedical Materials, Special Issue on Forensic Biomechanics, 33, 43-54.
  • 13. Sahoo S., DeLozier K.R., Dumm R.A., Rosen M.J., Derwin K.A., 2014, Fiber-reinforced dermis graft for ventral hernia repair. Journal of the Mechanical Behavior of Biomedical Materials 34, 20-29.
  • 14. Sutton M.A., Cheng M.Q., Peters W.H., Chao Y.J. and McNeill S.R., 1986, Application of an optimized digital correlation method to planar deformation analysis. Image and Vision Computing 4(3), 143-151.
  • 15. Sutton M.A., Turner J.L., Bruck H.A. and Chae T.A., 1991, Full-field representation of discretely sampled surface deformation for displacement and strain analysis. Experimental Mechanics 31(2), 168-177.
  • 16. Takaza M., Moerman KM., Simms C.K., 2013, Passive skeletal muscle response to impact loading: experimental testing and inverse modeling. Journal of the Mechanical Behavior of Biomedical Materials 27, 214-225.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfdec802-50f3-47d8-980c-0c47205a3459
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.