Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present paper, the comprehensive fully self-consistent optical-electrical-thermal-recombination model is used to determine the optimal structure of the possible GaInNAs quantum-well (QW) tunnel-junction (TJ) vertical-cavity surface-emitting lasers (VCSELs) with single-fundamental-mode operation at 2.33 μm wavelength suited for carbon monoxide sensing applications. From among various considered structures, the diode laser with 4-μm TJ and two 6-nm Ga0.15In0.85N0.015As0.985/Ga0.327In0.673As0.71P0.29 QWs has the lowest threshold current and seems to be optimal for the above applications. Higher threshold currents are obtained for Ga0.15In0.85N0.015As0.985/Al0.138 -Ga0.332In0.530As QW structures but the latter can be grown in reactors without P source which are used for fabrication of GaAs-based devices. Both the modelled VCSELs offer a very promising room temperature continuous wave performance and may represent an alternative choice to GaSb-based lasers.
Rocznik
Tom
Strony
737--744
Opis fizyczny
Bibliogr. 92 poz., wykr., rys., tab.
Twórcy
autor
- Photonics Group, Institute of Physics, Lodz University of Technology, 219 Wolczanska St., 90-924 Lodz, Poland
autor
- Photonics Group, Institute of Physics, Lodz University of Technology, 219 Wolczanska St., 90-924 Lodz, Poland
Bibliografia
- [1] S. Ochelski, P. Bogusz, and A. Kiczko, “Heat effects measurements in process of dynamic crash of polymer composites”, Bull. Pol. Ac.: Tech. 60 (1), 25-30 (2012).
- [2] J. Wojtas, J. Mikolajczyk, M. Nowakowski, B. Rutecka, R.Medrzycki, and Z. Bielecki, “Applying CEAS method to UV, VIS, and IR spectroscopy sensors”, Bull. Pol. Ac.: Tech. 59 (4), 415-418 (2011).
- [3] Z. Yin and X. Tang, “A review of energy bandgap engineering in III-V semiconductor alloys for mid-infrared laser applications”, Solid-State Electron. 51 (1), 6-15 (2007).
- [4] W. Both, A.E. Bochkarev, A.E. Drakin, and B.N. Sverdlov, “Thermal resistivity of quaternary solid solutions InGaAsSb and GaAlAsSb lattice-matched to GaSb”, Cryst. Res. Technol. 24 (9), K161-K166 (1989).
- [5] M. Guden and J. Piprek, “Material parameters of quaternary III-V semiconductors for multilayer mirrors at 1.55 μm wavelength”, Modell. Simul. Mater. Sci. Eng. 4 (4), 349-357 (1996).
- [6] G. Almuneau, E. Hall, T. Mukaihara, S. Nakagawa, C. Luo, D.R. Clarke, and L.A. Coldren, “Improved electrical and thermal properties of InP-AlGaAsSb Bragg mirrors for longwavelength vertical-cavity lasers”, IEEE Photon. Techn. Lett. 12 (10), 1322-1324 (2000).
- [7] T. Borca-Tasciuc, D.W. Song, J.R. Meyer, I. Vurgaftman, M.- J. Yang, B.Z. Nosho, L.J. Whitman, H. Lee, U. Martinelli, G.W. Turner, M.J. Manfra, and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices”, J. Appl. Phys. 92 (9), 4994-4998 (2002).
- [8] T. Newell, X. Wu, A.L. Gray, S. Dorato, H. Lee, and L.F. Lester, “The effect of increased valence band offset on the operation of 2 μm GaInAsSb-AlGaAsSb lasers”, IEEE Photon. Technol. Lett. 11 (1), 30-32 (1999).
- [9] L. Shterengas, G.L. Belenky, J.G. Kim, and R.U. Martinelli, “Design of high-power room-temperature continuous-wave GaSb-based type-I quantum-well lasers with > 2.5 μm”, Semicond. Sci. Tech. 19 (5), 655-658 (2004).
- [10] S. Abdollahi Pour, B.-M. Nguyen, S. Bogdanov, E.K. Huang, and M. Razeghi, “Demonstration of high performance long wavelength infrared type-II InAs/GaSb superlattice photodiode grown on GaAs substrate”, Appl. Phys. Lett. 95 (17), 173505 (2009).
- [11] H.-P.D. Yang, C. Lu, R. Hsiao, C. Chiou, C. Lee, C. Huang, H. Yu, C. Wang, K. Lin, N.A. Maleev, A.R. Kovsh, C. Sung, C. Lai, J. Wang, J. Chen, T. Lee, and J.Y. Chi, “Characteristics of MOCVD- and MBE-grown InGa(N)As VCSELs”, Semicond. Sci. Technol. 20 (8), 834-839 (2005).]
- [12] L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. ˇSimeˇckov´a, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database”, J. Quant. Spectrosc. Radiat. Transfer 110 (9-10), 533-572 (2009).
- [13] A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-based VCSEL with buried tunnel junction for emission around 2.3 μm”, IEEE J. Sel. Topics Quantum Electron. 15 (3), 933-940 (2009).
- [14] M.-C. Amann, S. Arafin, and K. Vizbaras, “Single mode and tunable GaSb-based VCSELs for wavelengths above 2 μm”, Proc. SPIE 7952, 7952-12 (2011).
- [15] S. Arafin, A. Bachmann, K. Vizbaras, A. Hangauer, J. Gustavsson, J. Bengtsson, A. Larsson, and M.-C. Amann, “Comprehensive analysis of electrically-pumped GaSb-based VCSELs”, Opt. Express 19 (18), 17267-17282 (2011).
- [16] R.P. Sarzała, “Modelling of the threshold operation of 1.3- μm GaAs-based oxide-confined (InGa)As/GaAs quantum-dot vertical-cavity surface-emitting lasers”, IEEE J. Quantum Electron. 40 (6), 629-639 (2004).
- [17] R.P. Sarzała and W. Nakwaski, “Optimisation of the 1.3-μm GaAs-based oxide-confined (GaIn)(NAs) verticalcavity surface-emitting lasers for their low-threshold roomtemperature operation”, J. Phys.: Condens. Mat. 16 (31), S3121-S3140 (2004).
- [18] R.P. Sarzała, M. Wasiak, T. Czyszanowski, and W. Nakwaski, “Performance characteristics of the 1.3-μm oxide-confined edge-emitting quantum-dot (InGa)As/GaAs diode lasers”, Bull. Pol. Ac.: Tech. 52 (3), 257-263 (2004).
- [19] A. Tomczyk, R.P. Sarzała, T. Czyszanowski, M. Wasiak, and W. Nakwaski, “Fully self-consistent three-dimensional model of edge-emitting nitride diode lasers”, Opto-Electron. Rev. 11 (1), 65-75 (2003).
- [20] H.Wenzel and H.J.W¨unsche, “The effective frequency method in the analysis of vertical-cavity surface-emitting lasers”, IEEEJ. Quantum Electron. 33 (7), 1156-1162 (1997).
- [21] R.P. Sarzała, Ł. Piskorski, P. Szczerbiak, R. Kudrawiec, and W. Nakwaski, “An attempt to design long-wavelength (> 2 μm) InP-based GaInNAs diode lasers”, Appl. Phys. A 108 (3), 521-528 (2012).
- [22] H. Czichos, T. Saito, and L.M. Smith, Springer Handbook ofMaterials Measurement Methods, Springer, Berlin, 2006.
- [23] T. Ishikawa, J. Saito, S. Sasa, and S. Hiyamizu, “Electrical properties of Si-doped AlxGa1−xAs layers grown by MBE”, Jpn. J. Appl. Phys. 21 (11), L675-L676 (1982).
- [24] M.L. Lovejoy, M.R. Melloch, and M.S. Lundstrom, “Temperature dependence of minority and majority carrier mobilities in degenerately doped GaAs”, Appl. Phys. Lett. 67 (8), 1101-1103 (1995).
- [25] S. Izumi, N. Hayafuji, K. Ito, K. Sato, and M. Otsubo, “Chemical beam epitaxial growth of Si doped GaAs and InP by using silicon tetraiodide”, Appl. Phys. Lett. 68 (22), 3102-3104 (1996).
- [26] N. Chand, T. Henderson, J. Klem, W.T. Masselink, R. Fischer, Y.-C. Chang, and H. Morkoc, “Comprehensive analysis of Si-doped AlxGa1−xAs (x = 0 to 1): theory and experiments”, Phys. Rev. B 30 (8), 4481-4492 (1984).
- [27] T.F. Kuech, B.S. Meyerson, and E. Veuhoff, “Disilane: a new silicon doping source in metalorganic chemical vapour deposition of GaAs”, Appl. Phys. Lett. 44 (10), 986-988 (1984).
- [28] J. Saito and K. Kondo, “High-temperature growth of Si-doped AlGaAs by molecular-beam epitaxy”, J. Vac. Sci. Technol. B 8 (6), 1264-1269 (1990).
- [29] P.R. Hageman, M.H.J.M. de Croon, J.N.H. Reek, and L.J. Giling, “Pressure and temperature dependence os silicon doping of GaAs using Si2H6 in metalorganic chemical vapour deposition”, J. Cryst. Growth 116 (1-2), 169-177 (1992).
- [30] K. Tateno and C. Amano, “Carbon doping and etching in GaxIn1−xAsyP1−y on GaAs substrates using CBr4 by metalorganic chemical vapor deposition”, J. Electron. Mater. 28 (1) 63-68 (1999).
- [31] V. Bondarenko, “Positron annihilation study of equilibrium point defects in GaAs”, PhD Thesis, Martin Luther University of Halle- Wittenberg, Wittenberg, 2003.
- [32] C. Blaauw, F.R. Shepherd, C.J. Miner, and A.J. Springrhorpe, “Silicon incorporation in InP during LP-MOCVD using disilane”, J. Electron. Mater. 19 (1), 1-6 (1990).
- [33] J.N. Baillargeon, A.Y. Cho, and R.J. Fischer, “Growth of silicon and beryllium doped InP by MBE using solid phosphorus”, Proc. 6th Int. Conf. on Indium Phosphide and RelatedMaterials CA, 148-150 (1994).
- [34] J.M.Milikow, “Growth and characterization of III-V compound semiconductors”, MSc Thesis, Massachusetts Institute of Technology, Massachusetts, 1997.
- [35] Ch. Giesen, X.G. Xu, R. H¨ovel, M. Heuken, and K. Heime, “Silicon doping of InP grown by MOVPE using tertiarybutylphosphine”, Proc. 9th Int. Conf. on Indium Phosphideand Related Materials MA, 47-50 (1997).
- [36] K. Radhakrishnan, H.Q. Zheng, P.H. Zhang, S.F. Yoon, and G.I. Ng, “Characterization of silicon-doped InP grown by solid-source molecular beam epitaxy using a valved phosphorus cracker cell”, J. Cryst. Growth 204 (3), 275-281 (1999).
- [37] F.G. Kellert and S.R. Sloan, “Zn-doping in OMVPE grown InP:Zn/InGaAs/InP p − i − n double heterojunctions with In- GaAs:Zn contacting layers”, J. Electron. Mater. 21 (10), 983-987 (1992).
- [38] B. P˝od¨or, “Hole mobility in InP and GaSb”, Proc. 31st Int. Spring Seminar on Electronics Technology 1, 201-204 (2008).
- [39] C.A.C. Sequeira and D.M.F. Santos, “Hall effect measurements on p-n-p InP structures”, Braz. J. Phys. 38 (1), 147-155 (2008).
- [40] K. Beer, B. Baur, H. Heinecke, and R. Treichler, “Improvements in silicon doping of InP and GaInAs in metalorganic molecular beam epitaxy”, J. Cryst. Growth 120 (1-4), 312-316 (1992).
- [41] K.Y. Cheng and A.Y. Cho, “Silicon doping and impurity profiles in Ga0.47In0.53As and Al0.48In0.52As grown by molecular beam epitaxy”, J. Appl. Phys. 53 (6), 4411-4415 (1982).
- [42] R.A. Kubiak, J.J. Harris, and P. Dawson, “Electrical and optical properties of Si and Sn doped InxGa1−xAs (x = 0.53) grown by molecular beam epitaxy”, J. Appl. Phys. 55 (2), 598-600 (1984).
- [43] T. Fujii, T. Inata, K. Ishii, and S. Hiyamizu, “Heavily Si-doped InGaAs lattice-matched to InP grown by MBE”, Electron. Lett. 22 (4), 191-192 (1986).
- [44] N. Watanabe, T. Nittono, and K. Watanabe, “Annealing effect on the carrier concentration in heavily Si-doped n+-InGaAs”, Appl. Phys. Lett. 61 (16), 1945-1947 (1992).
- [45] D. Suzuki, T. Kimura, T. Takiguchi, M. Takemi, S. Fuji, Y. Mihashi, and H. Higuchi, “MOCVD growth of heavily p-type doped InGaAs using bismethylcyclopentadienylberyllium”, Proc. Int. Conf. on Indium Phosphide and RelatedMaterials MA, 540-543 (1997).
- [46] C. Chelli, D. Cui, S.M. Hubbard, A. Eisenbach, D. Pavlidis, S.K. Krawczyk, and B. Sermage, “Minority carrier lifetime in MOCVD-grown C- and Zn-doped InGaAs”, Proc. 11th Int. Conf. on Indium Phosphide and Related Materials 1, 127-130 (1999).
- [47] T. Sato, M. Mitsuhara, R. Iga, S. Kanazawa, and Y. Inoue, “Zndoped InGaAs with high carrier concentration enhanced by Sb surfactant for low specific contact resistance”, Proc. Int. Conf.on Indium Phosphide and Related Materials 1, 1-4 (2010).
- [48] P.G. Le Comber and J. Mort, Electronic and Structural Propertiesof Amorphous Semiconductors, Academic Press, New York, 1973.
- [49] J.F. Shackelford and W. Alexander, CRC Materials Science andEngineering Handbook, CRC Press, London, 2001.
- [50] www.thinfilm.com
- [51] D.R. Lide, CRC Handbook of Chemistry and Physics, Internet Version, Boca Raton, 2005.
- [52] Ł. Piskorski, R.P. Sarzała, and W. Nakwaski, “Investigation of temperature characteristics of modern InAsP/InGaAsP multiquantum- well TJ-VCSELs for optical fibre communication”, Opto-Electron. Rev. 19 (3), 320-326 (2011).
- [53] O. Dier, C. Lauer, and M.-C. Amann, “n-InAsSb/p-GaSb tunnel junctions with extremely low resistivity”, Electron. Lett. 42 (7), 419-420 (2006).
- [54] P. Szczerbiak, “The model of the diode laser emitting in the mid-infrared region with the dilute-nitride active region on indium phosphide”, BSc Thesis, Lodz University of Technology, Łodź, 2011, (in Polish).
- [55] E.F. Steigmeier and I. Kudman, “Thermal conductivity of III-V compounds at high temperatures”, Phys. Rev. 132 (2), 508-512 (1963).
- [56] I. Kudman and E.F. Steigmeier, “Thermal conductivity and Seebeck coefficient of InP”, Phys. Rev. 133 (6A), A1665- A1667 (1964).
- [57] S. Amith, I. Kudman, and E.F. Steigmeier, “Electron and phonon scattering in GaAs at high temperatures”, J. Appl. Phys. 138 (4A), A1270-A1276 (1965).
- [58] E.F. Steigmeier and I. Kudman, “Acoustical-optical phonon scattering in Ge, Si, and III-V compounds”, Phys. Rev. 141 (2), 767-774 (1966).
- [59] M.A. Afromowitz, “Thermal conductivity of Ga1−xAlxAs alloys”, J. Appl. Phys. 44 (3), 1292-1294 (1973).
- [60] W. Nakwaski, “Thermal conductivity of binary, ternary, and quaternary III-V compounds”, J. Appl. Phys. 64 (1), 159-166 (1988).
- [61] R. Bowers, J.E. Bauerle, and A.J. Cornish, “InAs1−xPx as a thermoelectric material”, J. Appl. Phys. 30 (7), 1050-1054 (1959).
- [62] M.S. Abrahams, R. Braunstein, and F.D. Rosi, “Thermal, electrical and optical properties of (In,Ga)as alloys”, J. Phys. Chem. Solids 10 (2-3), 204-210 (1959).
- [63] B. Abeles, “Lattice thermal conductivity of disordered semiconductor alloys at high temperatures”, Phys. Rev. 131 (5), 1906-1911 (1963).
- [64] R.O. Carlson, G.A. Slack, and S.J. Silverman, “Thermal conductivity of GaAs and GaAs1−xPx laser semiconductors”, J. Appl. Phys. 36 (2), 505-507 (1965).
- [65] W. Both and F.P. Herrmann, “Thermal resistivity of quaternary solid solution GaxIn1−xAsyP1−y lattice-matched to InP and GaAs”, Cryst. Res. Technol. 17 (11), K117-K122 (1982).
- [66] N. Yacoubi, B. Girault, and J. Fesquet, “Determination of absorption coefficients and thermal conductivity of GaAlAs/GaAs heterostructure using a photothermal method”, Appl. Optics 25 (24), 4622-4625 (1986).
- [67] Ł. Piskorski, “Modelling of physical phenomena in the selected VCSEL structures emitting at the second telecommunication window wavelength”, PhD Thesis, Lodz University of Technology, Łodź, 2010, (in Polish).
- [68] www.lakeshore.com
- [69] I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys”, J. Appl. Phys. 89 (11), 5815-5875 (2001).
- [70] I. Vurgaftman and J.R. Meyer, “Band parameters for nitrogencontaining semiconductors”, J. Appl. Phys. 94 (6), 3675-3696 (2003).
- [71] S. Wang, “Studies on thermodynamic properties of III-V compounds by first-principles response-function calculation”, Phys. Stat. Sol. B 246 (7), 1618-1627 (2009).
- [72] S. Adachi S, Properties of Semiconductor Alloys: Group-IV,III-V and II-VI Semiconductors, John Wiley & Sons, Chichester, 2009.
- [73] T.H. Glisson, J.R. Hauser, M.A. Littlejohn, and C.K. Williams, “Energy bandgap and lattice constant contours of iii-v quaternary alloys”, J. Electron. Mater. 7 (1), 1-16 (1978).
- [74] C.K. Williams, T.H. Glisson, J.R. Hauser, and M.A. Littlejohn, “Energy bandgap and lattice constant contours of iii-v quaternary alloys of the form AxByCzD or ABxCyDz”, J. Electron. Mater. 7 (5), 639-646 (1978).
- [75] R. Kudrawiec, Alloying of GaNxAs1−x with InNxAs1−x: a simple formula for the bandgap parametrization of Ga1−yInyNxAs1−x alloys”, J. Appl. Phys. 101 (2), 023522 (2007).
- [76] www.refractiveindex.info
- [77] S. Gehrsitz, F.K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H.Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modelling”, J. Appl. Phys. 87 (11), 7825-7837 (2000).
- [78] S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb”, Phys. Rev. B 35 (14), 7454-7463 (1987).
- [79] S. Adachi, Physical Properties of III-V Semiconductor Compounds, John Wiley & Sons, Chichester, 1992.
- [80] E. Kessels, Remote Plasma Deposition of Hydrogenated AmorphousSilicon: Plasma Processes, Film Growth and MaterialProperties, Technische Universiteit Eindhoven, Eindhoven, 2000.
- [81] www.filmetrics.com
- [82] C. Grasse, G. Boehm, M. Mueller, T. Gruendl, R. Meyer, and M.-C. Amann, “Empirical modeling of the refractive index for (AlGaIn)As lattice matched to InP”, Semicond. Sci. Technol. 25 (4), 045018 (2010).
- [83] B. Jensen and A. Torabi, “Refractive index of quaternary In1−xGaxAsyP1−y lattice matched to InP”, J. Appl. Phys. 54 (6), 3623-3625 (1983).
- [84] R.P. Sarzała, Ł. Piskorski, P. Szczerbiak, W. Nakwaski, and R. Kudrawiec, “Long-wavelength InP-based GaInNAs lasers”, Proc. Eur. Materials Research Society (E-MRS) Spring Meeting T, T-12 (2012).
- [85] W.G. Spitzer and J.M. Whelan, “Infrared absorption and electron effective mass in n-type gallium arsenide”, Phys. Rev. 114 (1), 59-63 (1959).
- [86] D.I. Babic, J. Piprek, K. Streubel, R.P. Mirin, N.M. Margalit, D.E. Mars, J.E. Bowers, and E.L. Hu, “Design and analysis of double-fused 1.55-μm vertical-cavity lasers”, IEEE J. QuantumElectron. 33 (8), 1369-1383 (1997).
- [87] O.K. Kim and W.A. Bonner, “Infrared reflectance and absorption of N-type InP”, J. Electron. Mater. 12 (5), 827-836 (1983).
- [88] C.H. Henry, R.A. Logan, F.R. Merritt, and J.P. Luongo, “The effect of intervalence band absorption on the thermal behavior of InGaAsP lasers”, J. Quantum Electron. 19 (6), 947-952 (1983).
- [89] H.C. Casey and P.L. Carter, “Variation of intervalence band absorption with hole concentration in p-type InP”, Appl. Phys. Lett. 44 (1), 82-83, 1984.
- [90] D.M. Wilt, N.S. Fatemi, P.P. Jenkins, V.G. Weizer, R.W. Hoffman, Jr., R.K. Jain, Ch.S. Murray, and D.R. Riley, “Electrical and optical performance characteristics of 0.74-eV p/n InGaAs monolithic interconnected modules”, NASA Technical Memorandum 113110, 1-10 (1997).
- [91] M. Ortsiefer, C. Neumeyr, J. Rosskopf, S. Arafin, G. B¨ohm, A. Hangauer, J. Chen, R. Strzoda, and M.-C. Amann, “GaSb and InP-based VCSELs at 2.3 μm emission wavelength for tuneable diode laser spectroscopy of carbon monoxide”, Proc. SPIE 7945, 7945-09 (2011).
- [92] R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature”, Appl. Optics 46 (33), 8118-8133 (2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfd3eb44-fe61-468e-ab63-f07c45032f28