PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Springback prediction of stretching process using finite element analysis for dp600 steel sheet

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Springback phenomenon is well predicted for some mild steel materials, but not for steels with higher strength. One of the most used tools to stamping optimization is usage of finite element analysis. In order to accurate describe the real behaviour of the materials for stamping of vehicle panels, the application of proper hardening rule seems to be crucial. Due to higher accuracy of predicted results, high strength steel sheets are usually modelled by means of kinematic or mixed isotropic-kinematic hardening models. In this paper the springback prediction of advanced high strength steel DP600 by numerical simulation was investigated. Through cyclic tension-compression tests, the material characterization has been performed for DP600 steel sheet. Different hardening models (isotropic, kinematic and mixed isotropic-kinematic) used in the simulations were compared with expreriment. The Yoshida–Uemori model succesfully describe the kinematic behaviour of the material and provided more accurate results than others.
Słowa kluczowe
Rocznik
Strony
5--8
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Computer Support of Technology, Technical University of Košice, Mäsiarska 74, 040 01 Košice, Slovakia
autor
  • Department of Computer Support of Technology, Technical University of Košice, Mäsiarska 74, 040 01 Košice, Slovakia
autor
  • Department of Technology and Materials, Technical University of Košice, Mäsiarska 74, 040 01 Košice, Slovakia
autor
  • Department of Technology and Materials, Technical University of Košice, Mäsiarska 74, 040 01 Košice, Slovakia
Bibliografia
  • 1. Boger R.K., Wagoner, R.H., Barlat F., Lee M.G., Chung K. (2005), Continous, large strain, tension/compression testing of sheet material, International Journal of Plasticity, 21, 2319–2343.
  • 2. Bruschi S., Altan T., Banabic D., Bariani P.F., Brosius A., Cao J., Tekkaya A. E. (2014), Testing and modelling of material behaviour and formability in sheet metal forming, CIRP Annals-Manufacturing Technology, 63(2), 727–749.
  • 3. Cao J., Lee W., Cheng H.S., Seniw M., Wang H., Chung K. (2009), Experimental and numerical investigation of combined isotropickinematic hardening behavior of sheet metals, International Journal of Plasticity, 25, 942-972.
  • 4. Chongthairungruang B., Uthaisangsuk V., Suranuntchai S., Jirathearanat S. (2013), Springback prediction in sheet metal forming of high strength steels, Materials & Design, 50, 253-266.
  • 5. Eggertsen P., Mattiasson K. (2010), On constitutive modeling for springback analysis, International Journal of Mechanical Sciences, 52(6), 804–818.
  • 6. Kim J.H., Kim D., Barlat F., Lee M. (2012) Crystal plasticity approach for predicting the Bauschinger effect in dual-phase steels. Materials Science and Engineering: A, 539, 259–270.
  • 7. Kuwabara T., Kumano Y., Ziegelheim J., Kurosaki I. (2009), Tension–compression asymmetry of phosphor bronze for electronic parts and its effect on bending behavior, International Journal of Plasticity, 25(9), 1759–1776.
  • 8. Lemoine X., Durrenberger L., Zhu H., Kergen R. (2011), Mixed hardening models: parameters identification on AHSS steels, IDDRG Conference Proceedings.
  • 9. Mahmoudi A.H., Pezeshki-Najafabadi, S.M., Badnava, H. (2011), Parameter determination of Chaboche kinematic hardening model using a multi objective Genetic Algorithm, Computational Materials Science, 50, 1114-1122.
  • 10. Piao K., Lee J.K., Kim J.H., Kim H.Y., Chung K., Barlat F., Wagoner R.H. (2012), A sheet tension/compression test for elevated temperature, International Journal of Plasticity, 38, 27- 49.
  • 11. Shi M., Zhu X., Xia C., Stoughton T. (2008) Determination of nonlinear isotropic/kinematic hardening constitutive parameters for AHSS using tension and compression tests, Numisheet Conference, 137–142.
  • 12. Silvestre E., Mendiguren J., Galdos L., Sáenz de Andragona E. (2015), Comparison of the hardening behaviour of different steel families: From mild and stainless steel to advanced high strength steels, International Journal of Mechanical Sciences, 101-102, 10-20.
  • 13. Slota J., Jurčišin M., Spišák E. (2012), Numerical and experimental springback determination of sheet metals in an air bending process, Acta Metallurgica Slovaca, 18(4), 200-209.
  • 14. Slota J., Jurčišin M., Spišák E., Sleziak, T. (2014), An investigation of springback in sheet metal forming of high strength steels, Applied Mechanics and Materials, 693, 370-375.
  • 15. Wagoner R.H., Lim H., Lee M.G. (2013), Advanced issue on springback, International Journal of Plasticity, 45, 3-20.
  • 16. Yoshida, F., Uemori, T. (2002), A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation, International Journal of Plasticity,18, 661–686.
  • 17. Yoshida, F., Uemori, T. (2003), A model of large-strain cyclic plasticity and its application to springback simulation, International Journal of Mechanical Sciences, 45(10), 1687–1702.
Uwagi
1. The work has been accomplished under the research project No. APVV-0273-12: “Supporting innovations of autobody components from the steel sheet blanks oriented to the safety, the ecology and the car weight reduction“ financed by the Slovak Research and Development Agency and VEGA 1/0872/14 supported by the Scientific Research Committee".
2. Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfcb349a-13ac-45b0-a48c-5992a1827d2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.