PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrochemical cycle for the conversion of the waste heat into electrical energy: the possibility of using in water transport

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We developed a concept and calculated an efficiency of the electrochemical cycle of converting low-grade heat (temperature difference 10-80°C) into electricity. The cycle could be divided into two stages: creating a concentration difference by a solution distilled in a temperature gradient and electricity generation in concentration galvanic cell. The calculation shows that the efficiency of converting heat into electricity could reach 40-55% of Carnot efficiency in a temperature range of 0-100°C in the case of use of a multi-cascade distiller. The calculations show that ratio power/mass of the device is too low to be used in automobile or air transport, but it could be used in water transport.
Czasopismo
Rocznik
Strony
79--84
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Southern Federal University, B. Sadovaia 105/42, 344006, Rostov-on-Don, Russia
autor
  • Rostov Branch of Moscow State University of Technology and Management Semashko 55, 344001, Rostov-on-Don, Russia
Bibliografia
  • 1. Quickenden, T. & Mua, Y. A review of power generation in aqueous thermogalvanic cells. J. Electrochem. Soc. 1995. No. 11. P. 3985-3994.
  • 2. Mua, Y. & Quickenden, T. Power conversion efficiency, electrode separation, and overpotential in the ferricyanide/ferrocyanide thermogalvanic cell. J. Electrochem. Soc. 1996. No. 8. P. 2558-2564.
  • 3. Kang, T. & et al. Electrical power from nanotube and graphene electrochemical thermal Energy harvesters. Advanced Functional Materials. 2012. No. 3. P. 477-489.
  • 4. Gunavan, A. & et al. Liquid thermoelectrics: review of recent and limited new data of thermogalvanic cell experiments. Nanoscale Microscale Thermophys. Eng. 2013. Vol. 17. No. 4. P. 304-322.
  • 5. Gunavan, A. & et al. The amplifying effect of natural convection on power generation of thermogalvanic cells. International Journal of Heat and Mass Transfer. 2014. Vol. 78. P. 423-434.
  • 6. Hu, R. & et al. Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based Thermo-Electrochemical Cell. Nano Lett. 2010. Vol. 10. No. 3. P. 838-846.
  • 7. Kang, T.J. & et al. Electrical Power from Nanotube and Graphene Electrochemical Thermal. Energy Harvesters. Adv. Funct. Mater. 2012. Vol. 22. P. 477-489.
  • 8. Black, J.J. & et al. The thermoelectrochemistry of lithium-glyme solvate ionic liquids: towards waste heat harvesting. Phys. Chem. Chem. Phys. 2016. Vol. 18. P. 20768-20777.
  • 9. Bonetti, M. & et al. Huge Seebeck coefficients in nonaqueous electrolytes, J. Chem. Phys. 2011. Vol. 134. P. 114513-1 - 114513-8.
  • 10. Zhou, H. & et al. Supramolecular Thermo-Electrochemical Cells: Enhanced Thermoelectric Performance by Host–Guest Complexation and Salt-Induced Crystallization. J. Am. Chem. Soc. 2016. Vol. 138. No. 33. P. 10502-10507.
  • 11. Rahimi, M. & et al. Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery. Journal of Power Sources. 2017. Vol. 351. P. 45-50.
  • 12. Vassel, S. &Vassel, N. Electrochemical way of converting low-grade heat energy into electricity based on crystalline hydrate melting and crystallization. International Journal of Heat and Mass Transfer. 2018. Vol. 122. P. 818-822.
  • 13. Yuan Yang & et al. Membrane-Free Battery for Harvesting Low-Grade Thermal Energy. Nano Lett. 2014. Vol. 14. No. 11. P. 6578-6583.
  • 14. Vassel, S. Electrochemical way of converting geothermal and low-potential heat energy into electricity. JP Journal of Heat and Mass Transfer. 2015. Vol. 11. No. 2. P. 169-176.
  • 15. Carati, A. & Marino, M. & Brogioli, D. Thermodynamic study of a distiller-electrochemical cel system for energy production from low temperature heat sources. Energy. 2015. Vol. 93. P. 984-993.
  • 16. Vassel, S. & Vassel, N. A hybrid of thermogalvanic and concentration galvanic cells as an effective device for converting low-potential heat energy into electricity. International Journal of Heat and Mass Transfer. 2017. Vol. 108. P. 2333-2337.
  • 17. Рабинович, В.А. & Хавин, З.В. Краткий химический справочник. Ленинград: Химия, 1978, [In Russian: Rabinovich, V. & Havin, Z. A brief chemical handbook. Leningrad: Chemistry].
  • 18. Равдель, А.А. & Пономарева, А.М. Краткий справочник физико-химических величин. Санкт-Петербург: Иван Федоров. 2003. 240 стр. [In Russian: Ravdel, A. & Ponomareva, A. Brief reference of physico-chemical variables. Sankt-Peterburg. Ivan Fedorov].
  • 19. Волков, A.И. & Жарский, И.M. Большой химический справочник. Минск: Современная школа. 2005. 605 с. [In Russian: Volkov, A. & Zharskiy, I. Big chemical reference book, Minsk: Modern school].
  • 20. Вайнел, Д.В. Аккумуляторные батареи. Москва: Госэнергоиздат. 1960. 480 с. [In Russian: Vainel, D.V. Rechargeable batteries. Moscow: Gosenergoizdat].
  • 21. Knock Nevis. Avaluable at: https://ru.wikipedia.org/wiki/Knock_Nevis
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfc786e2-7a38-4c3f-9a7b-df6fcf97b1f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.