PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of lateral spillway and morning glory spillway performance in flood control

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the emergence of climate change and the increasing human intervention in the global climate, floods have affected different parts of the world. In practice, floods are the most terrible natural disaster in the world, both in terms of casualties and financial losses. To reduce the adverse effects of this phenomenon, it is necessary to use structural and non-structural methods of flood risk management. One of the structural methods of flood control is to allocate a certain part of reservoir dams to flood control. In order to safely exit the flood from the dam reservoir, the spillway structure should be used. One of the important issues in designing a spillway structure is reducing its construction costs. In order to safely exit the flood with a specified return period from the dam reservoir, as the length of the spillway decreases, the height of the water blade on the spillway increases. In other words, decreasing the spillway length increases the height of the dam and its construction and design costs. In this study, the design and comparison of the performance of two glory spillways and lateral spillways have been considered. The results showed that for a given length for the drain edge of both types of spillways, the height of the water blade on the glory spillway is always higher than the lateral spillway. For example, when a 10,000-year-old flood occurs, it is about 8 m.
Wydawca
Rocznik
Tom
Strony
187--191
Opis fizyczny
Bibliogr. 20 poz., tab., wykr.
Twórcy
  • Universitas Mahasaraswati Denpasar, Agriculture and Business Faculty, JL. Kamboja 11A, Denpasar, Bali, 80361, Indonesia
  • Ming Chi University of Technology, Department of Industrial Engineering and Management, New Taipei City, Taiwan
  • Universitas Negeri Padang, Faculty of Engineering, Padang, Indonesia
  • University of Anbar, Upper Euphrates Basin Developing Center, Ramadi, Iraq
  • Universitas Muhammadiyah Kalimantan Timur, Faculty of Science and Technology, Department of Civil Engineering, Samarinda, Indonesia
  • International Islamic University Malaysia, Ahmad Ibrahim Kulliyyah of Laws, Civil Law Department, Kuala Lumpur, Malaysia
  • Al-Manara College for Medical Sciences, Maysan, Iraq
  • Al-Mustaqbal University College, Anesthesia Techniques Department, Babylon, Iraq
  • Al-Nisour University College, Radiology and Sonar Techniques Department, Baghdad, Iraq
  • Saveetha University, Department of Pharmocology, Chennai, India
Bibliografia
  • AFSHAR A., KHOSRAVI M., MOLAJOU A. 2021. Assessing adaptability of cyclic and non-cyclic approach to conjunctive use of groundwater and surface water for sustainable management plans under climate change. Water Resources Management. Vol. 35(11) p. 3463–3479. DOI 10.1007/s11269-021-02887-3.
  • AHMAD S., SIMONOVIC S.P. 2000. System dynamics modeling of reservoir operations for flood management. Journal of Computing in Civil Engineering. Vol. 14(3) p. 190–198. DOI 10.1061/(ASCE)0887-3801(2000)14:3(190).
  • ALEXANDER K.A., HEANEY A.K., SHAMAN J. 2018. Hydrometeorology and flood pulse dynamics drive diarrheal disease outbreaks and increase vulnerability to climate change in surface-water-dependent populations: A retrospective analysis. PLoS Medicine. Vol. 15(11), e1002688. DOI 10.1371/journal.pmed.1002688.
  • ALLAWI M.F., JAAFAR O., HAMZAH F.M., ABDULLAH S.M.S., EL-SHAFIE A. 2018. Review on applications of artificial intelligence methods for dam and reservoir-hydro-environment models. Environmental Science and Pollution Research. No. 25(14) p. 13446–13469. DOI 10.1007/s11356-018-1867-8.
  • ANGELAKIS A.N., ANTONIOU G., VOUDOURIS K., KAZAKIS N., DALEZIOS N., DERCAS N. 2020. History of floods in Greece: Causes and measures for protection. Natural Hazards. Vol. 101 p. 833–852. DOI 10.1007/s11069-020-03898-w.
  • BALASBANEH A.T., MARSONO A.K.B., GOHARI A. 2019. Sustainable materials selection based on flood damage assessment for a building using LCA and LCC. Journal of Cleaner Production. Vol. 222 p. 844–855. DOI 10.1016/j.jclepro.2019.03.005.
  • CHAN N.W., AB GHANI A., SAMAT N., HASAN N.N.N., TAN M.L. 2019. Integrating structural and non-structural flood management measures for greater effectiveness in flood loss reduction in the Kelantan River basin, Malaysia. In: AWAM International Conference on Civil Engineering. Cham. Springer p. 1151–1162. DOI 10.1007/978-3-030-32816-0_87.
  • FATTOR C.A., BACCHIEGA J.D. 2009. Design conditions for morning-glory spillways: Application to Potrerillos dam spillway. In: Advances in water resources and hydraulic engineering. Berlin, Heidelberg. Springer p. 2123–2128. DOI 10.1007/978-3-540-89465-0_364.
  • ICOLD 1964. World register of dams: Registre mondial des barrages. Paris. International Commission on Large Dams.
  • MARVI M. T. 2020. A review of flood damage analysis for a building structure and contents. Natural Hazards. Vol. 102(3) p. 967–995. DOI 10.1007/s11069-020-03941-w.
  • MASINA M., LAMBERTI A., ARCHETTI R. 2015. Coastal flooding: A copula based approach for estimating the joint probability of water levels and waves. Coastal Engineering. Vol. 97 p. 37–52. DOI 10.1016/j.coastaleng.2014.12.010.
  • MEIßNER T., SCHÜTT M., SURES B., FELD C.K. 2018. Riverine regime shifts through reservoir dams reveal options for ecological management. Ecological Applications. Vol. 28(7) p. 1897–1908. DOI 10.1002/eap.1786.
  • MOUSA M. 2018. The phenomenon of climate change in organization and HR-related literature: A conceptual brief analysis. Management of Sustainable Development. Vol. 10(1), 23. DOI 10.2478/msd-2018-0004.
  • NOURANI V., ROUZEGARI N., MOLAJOU A., BAGHANAM A.H. 2020. An integrated simulation-optimization framework to optimize the reservoir operation adapted to climate change scenarios. Journal of Hydrology. Vol. 587, 125018. DOI 10.1016/j.jhydrol.2020.125018.
  • PAHL-WOSTL C. 2019. Governance of the water-energy-food security nexus: A multi-level coordination challenge. Environmental Science & Policy. Vol. 92 p. 356–367. DOI 10.1016/j.envsci.2017.07.017.
  • PIELKE R.A., DOWNTON M.W. 2000. Precipitation and damaging floods: Trends in the United States, 1932–97. Journal of Climate. Vol. 13 (20) p. 3625–3637. DOI 10.1175/1520-0442(2000)013%3C3625:PADFTI%3E2.0.CO;2.
  • TITOVA T.S., LONGOBARDI A., AKHTYAMOV R.G., NASYROVA E.S. 2017. Lifetime of earth dams. Magazine of Civil Engineering. Vol. 1(69) p. 34–43. DOI 10.18720/MCE.69.3.
  • TULTS H. 1956. Flood protection of canals by lateral spillways. Journal of the Hydraulics Division. Vol. 82(5), 1077. DOI 10.1061/JYCEAJ.0000045.
  • YAVARI F., SALEHI NEYSHABOURI S., YAZDI J., MOLAJOU A. 2022. A novel framework for urban flood damage assessment. Water Resources Management. DOI 10.1007/s11269-022-03122-3.
  • YE Z. C., CHEN Y., MA J. Z., LIU H. 2020. Review and enlightenment of the development of British Modern flood risk management system. In: 10th International Conference on Computer Engineering and Networks. CENet 2020. Advances in Intelligent Systems and Computing. Vol. 1274. Eds. Q. Liu, X. Liu, T. Shen, X. Qiu. Singapore. Springer p. 1345–1355. DOI 10.1007/978-981-15-8462-6_154.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfbfeab1-6528-4af2-bc19-156f6d5b73af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.