PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flexural performance of precast hollow core slabs strengthened with textile reinforced highly ductile concrete (TRHDC)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Textile-reinforced highly ductile concrete (TRHDC) was a promising composite material, which exhibited multiple crack characteristics, high cracking and ultimate tensile strength under uniaxial tension. In this study, six precast hollow-core slabs including one reference slab and five TRHDC-strengthened slabs were manufactured and tested as simply supported under four-point bending. The parameters under investigation included: (I) the TRHDC matrix added with or without polyvinyl alcohol (PVA) fibres, and (II) the number of textile layers. The test results indicated that adding PVA fibres in the TRHDC matrix could effectively limit the crack width of TRHDC composites, and multi-crack behavior was observed in the strengthening overlay. Besides, TRHDC composites were efficient in enhancing the flexural capacity of strengthened slabs, which were 70-113% in cracking load, and 74-132% in peak load compared with the reference slab. Finally, based on the plane section assumption, an analytical model was given to predict the flexural capacity of TRHDC-strengthened slabs.
Rocznik
Strony
art. e238, 1--15
Opis fizyczny
Bibliogr. 29 poz., il., tab., wykr.
Twórcy
autor
  • Xi’an University of Architecture and Technology, School of Civil Engineering, Xi’an, Shaanxi Province, China
autor
  • Xi’an University of Architecture and Technology, School of Civil Engineering, Xi’an, Shaanxi Province, China
  • Xi’an University of Architecture and Technology, School of Civil Engineering, Xi’an, Shaanxi Province, China
autor
  • Xi’an University of Architecture and Technology, School of Civil Engineering, Xi’an, Shaanxi Province, China
autor
  • Xi’an University of Architecture and Technology, School of Civil Engineering, Xi’an, Shaanxi Province, China
Bibliografia
  • 1. Souza RHF, Appleton J. Behaviour of shear-strengthened reinforced concrete beams. J Mater Struct Constr. 1997;30:81-6.
  • 2. Altun F. An experimental study of the jacketed reinforced-concrete beams under bending. J Constr Build Mater. 2004;18:611-8.
  • 3. Cheong HK, MacAlevey N. Experimental behavior of jacketed reinforced concrete beams. J Struct Eng. 2000;126:692-9.
  • 4. Fédération internationale du béton. Seismic assessment and retrofit of reinforced concrete buildings: state-of-art report. Int Feder Struct Concrete 2003.
  • 5. Giese ACH, Giese DN, Dutra VFP, Da Silva Filho LCP. Flexural behavior of reinforced concrete beams strengthened with textile reinforced mortar [J]. J Build Eng. 2021;33:2352-7102.
  • 6. Bösche A, Jesse F, Ortlepp R, Weiland S, Curbach M. Textile reinforced concrete for flexural strengthening of RC structures – Part 1: structural behavior and design model. ACI Spec Publ. 2008;251:19-40.
  • 7. Awani O, El-Maaddawy T, Ismail N. Fabric-reinforced cementitious matrix: a promising strengthening technique for concrete structures. Constr Build Mater. 2017;132:94-111.
  • 8. Koutas LN, Tetta Z, Bournas DA, Triantafllou TC. Strengthening of concrete structures with textile reinforced mortars: state-of-theart review. J Compos Constr. 2019;23(1):03118001.
  • 9. Gonzalez-Libreros JH, Sabau C, Sneed LH, Pellegrino C, Sas G. State of research on shear strengthening of RC beams with FRCM composites. Constr Build Mater. 2017;149:444-58.
  • 10. Azam R, Soudki K, West JS, Noel M. Strengthening of shear critical RC beams: alternatives to externally bonded CFRP sheets. Constr Build Mater. 2017;151:494-503.
  • 11. Li VC. On engineered cementitious composites (ECC): a review of the material and its applications. Trans Res Record J Transport Res Board. 2011;2164(1):1-8.
  • 12. Kanda T, Li VC. Practical design criteria for saturated pseudo strain hardening behavior in ECC. J Adv Concr Technol. 2006;4(1):59-72.
  • 13. Li VC, Wang S, Wu C. Tensile strain-hardening behavior of PVAECC; 2001.
  • 14. Yang JM, Min KH, Shin HO, Yoon YS. Effect of steel and synthetic fibers on flexural behavior of high-strength concrete beams reinforced with FRP bars. J Compos Part B Eng. 2012;43:1077-86.
  • 15. Dong Z, Deng M, Dai J, Song S. Flexural strengthening of RC slabs using textile reinforced mortar improved with short PVA fibers [J]. Constr Build Mater. 2021;304:0950-1618.
  • 16. Dong Z, Deng M, Zhang C, Zhang Y, Sun H. Tensile behavior of glass textile reinforced mortar (TRM) added with short PVA fibers [J]. Constr Build Mater. 2020;260:0950-0618.
  • 17. Caggegi C, Carozzi FG, De Santis S, Fabbrocino F, Focacci F, et al. Experimental analysis on tensile and bond properties of PBO and aramid fabric reinforced cementitious matrix for strengthening masonry structures. Compos Part B. 2017;127:175-95.
  • 18. Caggegi C, Lanoye E, Djama K, et al. Tensile behavior of a basalt TRM strengthening system: influence of mortar and reinforcing textile ratios. Compos BEng. 2017;130:90-102.
  • 19. Carozzi FG, Bellini A, D’Antino T, De Felice G, Focacci F, et al. Experimental investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements. Compos Part B. 2017;128:100-19.
  • 20. Leone M, Aiello MA, Balsamo A, Carozzi FG, Ceroni F, et al. Glass fabric reinforced cementitious matrix: tensile properties and bond performance on masonry substrate. Compos Part B. 2017;127:196-214.
  • 21. D’Antino T, Carloni C, Sneed LH, Pellegrino C. Matrix-fiber bond behavior in PBO FRCM composites: a fracture mechanics approach. Eng Fract Mech. 2014;117:94-111.
  • 22. Deng M, Dong Z, Zhang C. Experimental investigation on tensile behavior of carbon textile reinforced mortar (TRM) added with short polyvinyl alcohol (PVA) fibers [J]. Constr Build Mater. 2020;235:0950-0618.
  • 23. Barhum R, Mechtcherine V. Influence of short dispersed and short integral glass fibers on the mechanical behaviour of textile reinforced concrete. Mater Struct. 2013;46:557-72.
  • 24. CB/T 14040-2007, Code for design of prestressed concrete hollow-core slabs. Beijing: Chinese standard press; 2007.
  • 25. GB50010-2010, Code for design of concrete structures. Beijing: Chinese standard press; 2010.
  • 26. GB/T 2975-2018, Steel and steel products-location and preparation of samples and test pieces for mechanical testing. Beijing: Chinese standard press; 2018.
  • 27. GB.T 36262-2018, Fiber reinforced polymer composite grids for civil engineering. Chinese standard press; 2018.
  • 28. DBJ61/T112–2016, Technical specification for application of high ductile concrete, Xi’an, China; 2016.
  • 29. GB 50367-2013, Code for design of strengthening concrete structures. Beijing: Chinese standard press; 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfbe0a8c-45be-44bf-8799-eca7e6d7f548
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.