Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We present a convolution neural network used to determine face similarity given two images as input, i.e. a face identification task. The main focus is on the shape of the input data. We propose schemes where two pictures are connected in four different ways. The input sample is concatenated horizontally and vertically, giving the first two schemes. The other two input shapes include the intertwining by column and by row. Analysis of precision versus recall has been provided for each input schema. Some of the traditional approaches focus on deriving the feature vectors of an individual and then comparing the obtained vectors with each other. Our paper offers a new approach to face identification problems where two images of an individual are directly fed to the neural network. Then, it is the task of the neural network to determine the similarity score.
Słowa kluczowe
Rocznik
Tom
Strony
65--71
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
autor
- Department of Cybernetics and Robotics, Wrocław University of Science and Technology, ul.Janiszewskiego 11/17, 50-372 Wrocław, Poland, www.edu.domski.pl
Bibliografia
- [1] AT&T Laboratories Cambridge. “The database of faces”, 2023. https://cam-orl.co.uk/facedatabase.html.
- [2] P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces vs. fisherfaces: recognition using class specific linear projection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, 1997, 711–720, 10.1109/34.598228.
- [3] A. Eleyan and H. Demirel, “Pca and lda based face recognition using feedforward neural network classifier”. In: B. Gunsel, A. K. Jain, A. M. Tekalp, and B. Sankur, eds., Multimedia Content Representation, Classification and Security, Berlin, Heidelberg, 2006, 199–206.
- [4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residua learning for image recognition”, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 770–778, 10.1109/CVPR.2016.90.
- [5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks”, Commun. ACM, vol. 60, no. 6, 2017, 84–90, 10.1145/3065386.
- [6] L. Li, X. Mu, S. Li, and H. Peng, “A review of face recognition technology”, IEEE Access, vol. 8, 2020, 139110–139120, 10.1109/ACCESS.2020.3011028.
- [7] X. Li, Y. Xiang, and S. Li, “Combining convolutional and vision transformer structures for sheep face recognition”, Computers and Electronics in Agriculture, vol. 205, 2023, 107651, https://doi.org/10.1016/j.compag.2023.107651.
- [8] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition”. In: X. Xie, M. W. Jones, and G. K. L. Tam, eds., Proceedings of the British Machine Vision Conference (BMVC), 2015, 41.1–41.12, 10.5244/C.29.41.
- [9] B. S. Peng Lu and L. Xu, “Human face recognition based on convolutional neural network and augmented dataset”, Systems Science & Control Engineering, vol. 9, no. sup2, 2021, 29–37, 10.1080/21642583.2020.1836526.
- [10] F. Samaria and A. Harter, “Parameterisation of a stochastic model for human face identification”, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision, 1994, 138–142, 10.1109/ACV.1994.341300.
- [11] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recognition and clustering”. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 815–823, 10.1109/CVPR.2015.7298682.
- [12] Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face representation by joint identification-verification”. In: Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, eds., Advances in Neural Information Processing Systems, vol. 27, 2014.
- [13] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to human-level performance in face verification”. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, 1701–1708, 10.1109/CVPR.2014.220.
- [14] M. Turk and A. Pentland, “Face recognition using eigenfaces”. In: Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1991, 586–591, 10.1109/CVPR.1991.139758.
- [15] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features”, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, 2001, I–I, 10.1109/CVPR.2001.990517.
- [16] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment using multitask cascaded convolutional networks”, IEEE Signal Processing Letters, vol. 23, no. 10, 2016
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfb99525-95cc-4fa5-a6de-69ab2dfdfc90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.