PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The chemical digestion of Ti6Al7Nb scaffolds produced by Selective Laser Melting reduces significantly ability of Pseudomonas aeruginosa to form biofilm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In our previous work we reported the impact of hydrofluoric and nitric acid used for chemical polishing of Ti-6Al-7Nb scaffolds on decrease of the number of Staphylococcus aureus biofilm forming cells. Herein, we tested impact of the aforementioned substances on biofilm of Gram-negative microorganism, Pseudomonas aeruginosa, dangerous pathogen responsible for plethora of implant-related infections. The Ti-6Al-7Nb scaffolds were manufactured using Selective Laser Melting method. Scaffolds were subjected to chemical polishing using a mixture of nitric acid and fluoride or left intact (control group). Pseudomonal biofilm was allowed to form on scaffolds for 24 hours and was removed by mechanical vortex shaking. The number of pseudomonal cells was estimated by means of quantitative culture and Scanning Electron Microscopy. The presence of nitric acid and fluoride on scaffold surfaces was assessed by means of IR and rentgen spetorscopy. Quantitative data were analysed using the Mann–Whitney test (P ≤ 0.05). Our results indicate that application of chemical polishing correlates with significant drop of biofilm-forming pseudomonal cells on the manufactured Ti-6Al-7Nb scaffolds ( p = 0.0133, Mann–Whitney test) compared to the number of biofilm-forming cells on non-polished scaffolds. As X-ray photoelectron spectroscopy revealed the presence of fluoride and nitrogen on the surface of scaffold, we speculate that drop of biofilm forming cells may be caused by biofilm-supressing activity of these two elements.
Rocznik
Strony
115--120
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wrocław, Poland
autor
  • Centre for Advanced Manufacturing Technologies, Wrocław University of Science and Technology, Wrocław, Poland
autor
  • Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wrocław, Poland
autor
  • Centre for Advanced Manufacturing Technologies, Wrocław University of Science and Technology, Wrocław, Poland
autor
  • Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wrocław, Poland
  • Centre for Advanced Manufacturing Technologies, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wrocław, Poland
autor
  • Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wrocław, Poland
Bibliografia
  • [1] BARRAUD N., HASSETT D., SUNG-HEI H., SCOTT A.R., KJELLEBERG A., WEBBL J., Involvement of Nitric Oxide in Biofilm Dispersal of Pseudomonas aeruginosa, Journal of Bacteriology, 2006, 188(21), 7344–7353.
  • [2] BARTOSZEWICZ M., PRZONDO A., RYGIEL A., Analysis of the effect of selected antiseptics and antibiotics on the survival of planktonic cells and biofilm cells, Clin. Microbiol. Infect., 2007, 13, Suppl. 1, S140.
  • [3] CHLEBUS E., KUŹNICKA B., KURZYNOWSKI T., DYBAŁA B., Microstructure and mechanical behaviour of Ti-6al.-7Nb alloy produced by selective laser melting, Materials Characterization, 2011, 62, 5, 488–495.
  • [4] COLE J., REECORDS A., ORR M., LINDEN S., LEE VT., Catheter- Associated Urinary Tract Infection by Pseudomonas aeruginosa Is Mediated by Exopolysaccharide – Independent Biofilms, Inf. and Imm., 2014, 82, 2048–2058.
  • [5] DEBMALYA G., REZA S., TOLOU S., Recent Advances in Nanotubes for Orthopedic Implants, J. Nnotech. Smart. Mater., 2014, 1, 201.
  • [6] GARRETT E.R, ABHAY S.P, DIMITRIOS P.A., Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique, Biomaterials, 2008, 3625–3635.
  • [7] HAHNEL S., WASTL D.S., SCHNEIDER-FEYRER S., GIESSIBL F.J., BRAMBILLA E., CAZZANIGA G., IONESCU A., Streptococcus Mutans Biofilm Formation and Release of Fluoride from Experimental Resin-based Composites Depending on Surface Treatment and S-PRG Filler Particle Fraction, J. Adhes. Dent., 2014, 16(4), 313–321, DOI: 10.3290/ j.jad.a31800.
  • [8] KOSTAKIOTI M., HADJIFRANGISKOU M., HULTGREN S.J., Bacterial Biofilms: Development, Dispersal and Therapeutic Strategies in the Dawn of the Postantibiotic Era, Cold Spring Harb. Perspect. Med., 2013, DOI: 10.1101/ cshperspect.a010306.
  • [9] KRZAK-ROŚ J., FILIPIAK J., PEZOWICZ C., BASZCZUK A., MILLER M., KOWALSKI M., BĘDZIŃSKI R., The effect of substrate roughness on the surface structure of TiO2, SiO2, and doped thin films prepared by the sol-gel method, Acta of Bioengineering and Biomechanics, 2009, Vol. 11, No. 2.
  • [10] LECLERQ R. et al., EUCAST expert rules in antimicrobial susceptibility testing, Clin. Microbiol. Infect., 2013, 19, 141–160.
  • [11] LICHTE P., PAPE H.C., PUFE T., KOBBE P., FISCHER H., Scaffolds for bone healing: Concepts, materials and evidence, Injury, 2011, 42, 569–573.
  • [12] ŁYCZKOWSKA E., SZYMCZYK P., DYBAŁA B., CHLEBUS E., Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing, Archives of Civil and Mechanical Engineering, 2014, 14, 4, 586–594.
  • [13] NEUT D., HENDRIKS J., HORN J.R., MEI H.C., BUSSCHER H.J., Pseudomonas aeruginosa biofilm formation and slime excretion on antibiotic-loaded bone cement, Acta Orthopaed., 2005, 76(1), 109–114.
  • [14] SLOWINSKI J., Procedure of generating the individually matched bone scaffolds, Acta of Bioengineering and Biomechanics, 2011, Vol. 13, 3, 15–25.
  • [15] SMIESZEK A., DONESZ-SIKORSKA A., GRZESIAK J., KRZAK J., MARYCZ K., Biological effects of sol-gel derived ZrO2 and SiO2/ZrO2 coatings on stainless steel surface – In vitro model using mesenchymal stem cells, J. Biomater. Appl., 2014, 29(5), 699–714.
  • [16] SZEWCZYK E., Diagnostyka bakteriologiczna, PWN, 2013, ISBN 978-83-01-16060-9 [ang. Bacteriological Diagnostics].
  • [17] SZYMCZYK P., JUNKA A., ZIÓŁKOWSKI G., BARTOSZEWICZ M., SMUTNICKA D., CHLEBUS E., The ability of S.aureus to form biofilm on the Ti-6Al-7Nb bone scaffolds produced by Selective Laser Melting and subjected to the different types of surface modifications, Acta of Bioengineering and Biomechanics, 2013, 15, 1, 69–76.
  • [18] WOHLERS T., Report 2009, State of Industry, Annual Worldwide Progress Report, Wohlers Associates, INc. 2009.
  • [19] YADROITSEV I., BERTRAND P.H., SMUROV I., Parametric analysis of the selective laser melting process, Applied Surface Science, 2007, 8064–8069.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfb9002f-9102-4864-9b73-fb54cdd39bb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.