PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enancjoselektywna enzymatyczna desymetryzacja katalizowana oksydoreduktazami. Dehydrogenazy w reakcji redukcji. Część I

Treść / Zawartość
Identyfikatory
Warianty tytułu
Enantioselective enzymatic desymmetrization catalyzed by oxidoreductases. Dehydrogenases in reduction reactions. Part I
Języki publikacji
PL
Abstrakty
EN
Enzymes act as biocatalysts whether are also mediating in all anabolic and catabolic pathways, playing an extremely important role in the cells of all life forms. Catalytic potential of oxidoreductases is most commonly used in reduction reactions. Dehydrogenases and reductases catalyze the reversible desymmetrization reactions of meso and prochiral carbonyl compounds and alkenes. The oxidoreductase- catalyzed reactions require cofactors to initiate catalysis. In most cases, it is nicotinamide adenine dinucleotide (NADH) or its phosphorylated derivative (NADPH), which acts as a hydride donor. The necessity of employing expensive cofactors was, for the long time, one of the main limitations to the use of dehydrogenases. This problem was solved by developing a regeneration system of a cofactor in the reaction environment. Various systems are used for the cofactor recycling. In the case of a carbonyl compound reduction, an irreversible oxidation of formic acid to carbon dioxide is most frequently used. In this paper, selected examples of whole-cell and isolated enzymes applications in the carbonyl compound reduction are discussed. The application of baker’s yeast, microorganisms and dehydrogenases in enantioselective enzymatic desymmetrization (EED) of prochiral ketones leads to a broad spectrum of chiral alcohols used as intermediates in the syntheses of many pharmaceuticals and compounds presenting a potential biological activity.
Rocznik
Strony
763--782
Opis fizyczny
Bibliogr. 45 poz., schem., tab.
Twórcy
  • Katedra i Zakład Biochemii, Collegium Medicum Uniwersytet Mikołaja Kopernika, ul. Karłowicza 24, 85-092 Bydgoszcz
  • Katedra i Zakład Biochemii, Collegium Medicum Uniwersytet Mikołaja Kopernika, ul. Karłowicza 24, 85-092 Bydgoszcz
  • Katedra Chemii Organicznej, Uniwersytet Mikołaja Kopernika, ul. Gagarina 7, 87-100 Toruń
  • Katedra i Zakład Chemii Organicznej, Collegium Medicum Uniwersytet Mikołaja Kopernika, ul. dr. A. Jurasza 2, 85-089 Bydgoszcz
  • Katedra i Zakład Biochemii, Collegium Medicum Uniwersytet Mikołaja Kopernika, ul. Karłowicza 24, 85-092 Bydgoszcz
  • Katedra i Zakład Biochemii, Collegium Medicum Uniwersytet Mikołaja Kopernika, ul. Karłowicza 24, 85-092 Bydgoszcz
Bibliografia
  • [1] G.A.Ed. Molander, G. Thieme, Science of Synthesis, Stereoselective Synthesis 2, Stuttgart, New York 2011.
  • [2] K. Nakamura, R. Yamanaka, T. Matsudab, T. Haradab, Tetrahedron: Asymmetry, 2003, 14, 2659.
  • [3] T. Sato, Y. Okumura, J. Itai, T. Ujisawa, Chem. Lett., 1988, 17, 1537.
  • [4] R. MacLeod, H. Prosser, L. Fikentscher, J. Lanyi, H.S. Mosher, Biochemistry, 1964, 3, 838.
  • [5] R. Bernardi, P. Bravo, R. Cardillo, D. Ghiringhelli, G. Resnati, J. Chem. Soc. Perkin Trans. I, 1988, 283.
  • [6] M. Iwamoto, H. Kawada, T. Tanaka, M. Nakada, Tetrahedron Lett., 2003, 44, 7239.
  • [7] R.N. Patel, A. Goswami, L. Chu, M.J. Donovan, V. Nanduri, S. Goldberg, R. Johnston, P.J. Siva, B. Nielsen, J. Fan, W.X. He, Z. Shi, K.Y. Wang, R. Eiring, D. Cazzulino, A. Singh, R. Mueller, Tetrahedron: Asymmetry, 2004, 15, 1247.
  • [8] C.V.C. Prasad, S. Vig, D.W. Smith, Q. Gao, C.T. Polson, J.A. Corsa, V.L. Guss, A. Loo, D.M. Barten, M. Zheng, K.M. Felsenstein, S.B. Roberts, Bioorg. Med. Chem. Lett., 2004, 14, 3535.
  • [9] D. Schenk, D. Games, P. Seubert, J. Mol. Neurosci., 2001, 17, 259.
  • [10] Z. Guo, Y. Chen, A. Goswami, R.L. Hanson, R.N. Patel, Tetrahedron: Asymmetry, 2006, 17, 1589.
  • [11] S. Kawano, M. Horikawa, Y. Yasohara, J. Hasegawa, Biosci., Biotechnol., Biochem., 2003, 67, 809.
  • [12] R.N. Patel, L. Chu, R. Mueller, Tetrahedron: Asymmetry, 2003, 14, 3105.
  • [13] R.N. Patel, Adv. Synth. Catal., 2001, 343, 527.
  • [14] K. Nakamura, K. Takenaka, M. Fujii, Y. Ida, Tetrahedron Lett., 2002, 43, 3629.
  • [15] A. Goswami, R.L. Bezbaruah, J. Goswami, N. Borthakur, D. Dey, A.K. Hazarika, Tetrahedron:Asymmetry, 2000, 11, 3701.
  • [16] J. Goswami, R.L. Bezbaruah, A. Goswami, N. Borthakur, Tetrahedron: Asymmetry, 2001, 12, 3343.
  • [17] J.S. Yadav, S. Nanda, P.T. Reddy, A.B. Rao, J. Org. Chem., 2002, 67, 3900.
  • [18] M.J. Homann, R.B. Vail, E. Previte, M. Tamarez, B. Morgan, D.R. Dodds, A. Zaks, Tetrahedron, 2004, 60, 789.
  • [19] Z.-L. Wei, G.-Q. Lin, Z.-Y. Li, Bioorg. Med. Chem., 2000, 8, 1129.
  • [20] P. Vitale, C. D’Introno, F.M. Perma, M.G. Perrnone, A. Scilimati, Tetrahedron: Asymmetry, 2013, 24, 389.
  • [21] K. Faber, Biotransformations in organic chemistry, Springer, Berlin, 1992.
  • [22] W. Stampfer, B. Kosjek, C. Moitzi, W. Kroutil, K. Faber, Angew. Chem. Int. Ed., 2002, 41, 1014.
  • [23] M. Wittman, J. Carboni, R. Attar, B. Balasubramanian, P. Balimane, P. Brassil, F. Beaulieu, C. Chang, W. Clarke, J. Dell, J. Eummer, D. Frennesson, M. Gottardis, A. Greer, S. Hansel, W. Hurlburt, B. Jacobson, S. Krishnananthan, F.Y. Lee, A. Li, T.-A. Lin, P. Liu, C. Ouellet, X. Sang, M.G. Saulnier, K. Stoffan, Y. Sun, U. Velaparthi, H. Wong, Z. Yang, K. Zimmermann, M. Zoeckler, D. Vyas, J. Med. Chem., 2005, 48, 5639.
  • [24] R.L. Hanson, S. Goldberg, A. Goswami, T.P. Tully, R.N. Patel, Adv. Synth. Catal., 2005, 347, 1073.
  • [25] S. Butt, H.G. Davies, M.J. Dawson, G.C. Lawrence, J. Leaver, S.M. Roberts, M.K. Turner, B.J. Wakefield, W.F. Wall, J.A. Winders, J. Chem. Soc. Perkin Trans. I, 1987.
  • [26] W. Hummel, K. Abokitse, K. Drauz, C. Rollmann, H. Gröger, Adv. Synth. Catal., 2003, 345, 153.
  • [27] D. Zhu, Y. Yang, L. Hua, J. Org. Chem., 2006, 71, 4202.
  • [28] E. Burda, W. Hummel, H. Gröger, Angew. Chem. Int. Ed., 2008, 47, 9551.
  • [29] T. Matsuda, T. Harada, J. Org. Chem., 2000, 65, 157.
  • [30] T. Ema, H. Moriya, T. Kofukuda, T. Ishida, K. Maehara, M. Utaka, T. Sakai, J. Org. Chem., 2001, 66, 8682.
  • [31] J.S. Yadav, P.T. Reddy, S. Nanda, A.B. Rao, Tetrahedron: Asymmetry, 2001, 12, 3381.
  • [32] J.S. Yadav, S. Nanda, P. Thirupathi Reddy, A. Bhaskar Rao, J. Org. Chem., 2002, 67, 3900.
  • [33] S. Roy, V. Alexandre, M. Neuwels, L. Le Texier, Adv. Synth. Catal., 2001, 343, 738.
  • [34] M.P. Burns, J.W. Wong, Chem. Abstr., 2002, 137, 2466.
  • [35] G. Bold, A. Fässler, H.-G. Capraro, R. Cozens, T. Klimkait, J. Lazdins, J. Mestan, B. Poncioni, J. Rösel, D. Stover, M. Tintelnot-Blomley, F. Acemoglu, W. Beck, E. Boss, M. Eschbach, T. Hürlimann, E. Masso, S. Roussel, K. Ucci-Stoll, D. Wyss, M. Lang, J. Med. Chem., 1998, 41, 3387.
  • [36] B.S. Robinson, K.A. Riccardi, Y.-F. Gong, Q. Guo, D.A. Stock, W.S. Blair, B.J. Terry, C.A. Deminie, F. Djang, R.J. Colonno, P.-F. Lin, Antimicrob. Agents Chemother., 2000, 44, 2093.
  • [37] E.N. Kadnikova, N.M. Kostić, J. Non-Cryst. Solids, 2001, 63, 283.
  • [38] E.N. Kadnikova, N.M. Kostić, J. Org. Chem., 2003, 68, 2600.
  • [39] H. Yamamoto, M. Ueda, P. Ritsuzui, T.E. Hamatani, Chem. Abstr., 2003, 139, 35200.
  • [40] R.N. Patel, L. Chu, V.N. Nanduri, L. Jianqing, A. Kotnis, W.L. Parker, M. Liu, R. Mueller, Tetrahedron:
  • [41] C. Spiteri, J.E. Moses, Angew. Chem. Int. Ed., 2010, 49, 31.
  • [42] M. Meldal, C.W. Tornoe, Chem. Rev., 2008, 108, 2952.
  • [43] T. Kolasa, A.O. Stewart, C.D.W. Brooks, Tetrahedron Asymmetry, 1996, 7, 729.
  • [44] T. Schubert, W. Hummel, M.-R. Kula, M. Müller, Eur. J. Org. Chem., 2001, 22, 4181.
  • [45] C. Heiss, R. S. Phillips, J. Chem. Soc., Perkin Trans. 1, 2000, 2821.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfb5ae64-e57c-47a6-8978-49f61363b0a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.