Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Gas sensors, like any other type of sensors, are affected by external influencing factors among which the most aggressive are the ambient temperature and humidity. If the influence is small, their effect on the global accuracy of the sensor is reduced, and the error caused by these factors is included in the admissible error provided in the datasheet. However, if the influence ais significant, their effect can no longer be neglected and compensation of these errors is necessary based on the known influence characteristics found in the datasheet of the sensor. Unfortunately, these characteristics are not linear and the compensation must be accomplished according to an analytical relationship, if it can be known, or based on look-up tables implemented in the memory of the measuring device. Things get complicated when there are several influence factors. The paper describes a method for compensating the influence of ambient temperature and humidity on an MQ7 metal oxide gas (MOG) sensor, mainly dedicated to measuring carbon monoxide (CO), by mathematically modelling the surfaces of the characteristics given in the sensor’s datasheet and their implementation on a microcontroller platform. Experimental data show that, for a temperature variation between 10 and 50 Celsius degrees (˚C) and a relative humidity (RH) variation between 30 and 90%, a reduction of the total amount of error is obtained by compensating the influence quantities resulting in an accuracy improvement of more than 60%.
Czasopismo
Rocznik
Tom
Strony
849--862
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr., wzory
Twórcy
autor
- Gheorghe Asachi Technical University of Iasi, Faculty of Electrical Engineering, Iasi, Romania
autor
- Gheorghe Asachi Technical University of Iasi, Faculty of Electrical Engineering, Iasi, Romania
autor
- Gheorghe Asachi Technical University of Iasi, Faculty of Electrical Engineering, Iasi, Romania
Bibliografia
- [1] Ritter, T., Zosel, J., & Guth, U. (2023). Solid electrolyte gas sensors based on mixed potential principle - A review. Sensors and Actuators B: Chemical, 382, 133508. https://doi.org/10.1016/j.snb.2023.133508
- [2] Yu, H., Sun, A., Liu, Y., Zhou, Y., Fan, P., Luo, J., Zhong, A. (2021). Capacitive sensor based on GaN honeycomb nanonetwork for ultrafast and low temperature hydrogen gas detection, Sensors and Actuators B: Chemical, Vol. 346, 130488. https://doi.org/10.1016/j.snb.2021.130488
- [3] N.-H. Park, N.H., Akamatsu, T., Itoh, T., Izu, N., Shin, W., (2014). Calorimetric Thermoelectric Gas Sensor for the Detection of Hydrogen, Methane and Mixed Gases. Sensors, 14(5), 8350-8362. https://doi.org/10.3390/s140508350
- [4] Quang, V.V., Hung, V.N., Tuan, L.A., Phan, V.N., Huy, T.Q., & Quy, N.V. (2014). Graphene-coated quartz crystal microbalance for detection of volatile organic compounds at room temperature. Thin Solid Films, 568, 6-12. https://doi.org/10.1016/j.tsf.2014.07.036
- [5] Guz, Ł. (2019). Technical aspects of SAW gas sensors application in environmental measurements. MATEC Web of Conferences, 252, 06007. https://doi.org/10.1051/matecconf/201925206007
- [6] Bogue, R. (2015). Detecting gases with light: a review of optical gas sensor technologies. Sensor Review, 35(2), 133-140. https://doi.org/10.1108/sr-09-2014-696
- [7] Abideen, Z.U., Kim, J.-H., Lee, J.-H., Kim, J.-Y., Mirzaei, A., Kim, H.W., & Kim, S. S. (2017). Electrospun Metal Oxide Composite Nanofibers Gas Sensors: A Review. Journal of the Korean Ceramic Society, 54(5), 366-379. https://doi.org/10.4191/kcers.2017.54.5.12
- [8] Dey, A. (2018). Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: B, 229, 206-217. https://doi.org/10.1016/j.mseb.2017.12.036
- [9] Wang, C., Yin, L., Zhang, L., Xiang, D., & Gao, R. (2010). Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors, 10(3), 2088-2106. https://doi.org/10.3390/s100302088
- [10] Hajmirzaheydarali, M., & Ghafarinia, V. (2011). A Smart Gas Sensor Insensitive to Humidity and Temperature Variations. IOP Conference Series: Materials Science and Engineering, 17, 012047. https://doi.org/10.1088/1757-899x/17/1/012047
- [11] Malings, C., Tanzer, R., Hauryliuk, A., Kumar, S.P.N., Zimmerman, N., Kara, L. B., & Presto, A.A. (2019). Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring. Atmospheric Measurement Techniques, 12(2), 903-920. https://doi.org/10.5194/amt-12-903-2019
- [12] Gamboa, V.S., Kinast, É.J., & Pires, M. (2023). System for performance evaluation and calibration of low-cost gas sensors applied to air quality monitoring. Atmospheric Pollution Research, 14(2), 101645. https://doi.org/10.1016/j.apr.2022.101645
- [13] Kang, Y., Aye, L., Ngo, T.D., & Zhou, J. (2022). Performance evaluation of low-cost air quality sensors: A review. Science of The Total Environment, 818, 151769. https://doi.org/10.1016/j.scitotenv.2021.151769
- [14] De Vito, L., Cocca, V., Riccio, M., & Tudosa, I. (2012). Wireless Active Guardrail System for environmental measurements. 2012 IEEE Workshop on Environmental Energy and Structural Monitoring Systems (EESMS), 50-57. https://doi.org/10.1109/eesms.2012.6348403
- [15] Hanwey Electronics Co., MQ7 Sensor Datasheet. https://semiconductors.es/datasheet/MQ7.html
- [16] MQ7 Arduino shield datasheet and application: https://www.arduino.cc/reference/en/libraries/mq7sensor
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfb36da4-f33c-4629-83e5-c242c3ad5479
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.