Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the oral cavity environment, light-cured dental composites are susceptible to water sorption. This process can have a detrimental effect on the polymer network over a longer period, thereby causing deterioration of the material properties. This study aims to evaluate the impact of modifying a dimethacrylate resin mixture with liquid rubber on water sorption and the water contact angle. The resin mixture contained BisGMA (20 wt.%), BisEMA (30 wt.%), UDMA (30 wt.%) and TEGDMA (20 wt.%). Liquid rubber Hypro 2000X168LC VTB was used as a modifier in quantities of 5 %, 10 %, 15 %, and 20 % by weight relative to the resin. Water sorption studies were conducted following the ISO 4049 standard, and water contact angle tests were carried out as well. The percentage change in the water sorption weight after 7 days was approximately 1.6 % for the sample containing 5 wt.% liquid rubber, while for the sample with the 20 wt.% liquid rubber content, this value was approximately 1.9 %. The addition of 5 wt.% liquid rubber caused the contact angle value to increase by 16.34 % after 30 days compared to the first day. In the case of the other samples, such significant differences were not observed. Microscopy was employed to assess the miscibility and morphology of the liquid rubber domains. The study results show that modification with liquid rubber significantly limits water sorption and contributes to increasing the hydrophobicity of the surface, which is significant from a clinical standpoint. In the range of rubber concentrations studied, its solubility in the resin was not found, and for the 5 wt.% content, the most uniform distribution of domains was observed. With a larger share of liquid rubber, an increment in the number of domains and their sizes was noted, both before and after polymerization.
Czasopismo
Rocznik
Tom
Strony
165--170
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Lublin University of Technology, Faculty of Mechanical Engineering, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Lublin University of Technology, Faculty of Mechanical Engineering, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
- 1. Tanimoto Y., Kitagawa T., Aida M., Nishiyama N., Experimental and computational approach for evaluating the
- mechanical characteristics of dental composite resins with various filler sizes, Acta Biomater. 2006, 2, 6, 633-639, DOI: 10.1016/j.actbio.2006.06.006.
- 2. Okada K., Tosaki S., Hirota K., Hume W.R., Surface hardness change of restorative filling materials stored in saliva, Dent. Mater. 2001, 17, 1, 34-39, DOI: 10.1016/S0109-5641(00)00053-1.
- 3. Yiu C.K.Y. et al., Effect of resin hydrophilicity and temperature on water sorption of dental adhesive resins, Biomaterials 2006, 27, 9, 1695-1703, DOI: 10.1016/j.biomaterials.2005.09.037.
- 4. Pałka K., Wpływ modyfikacji ciekłym kauczukiem na właściwości światłoutwardzalnych kompozytów stomatologicznych, Wydawnictwo Politechniki Lubelskiej, Lublin 2020.
- 5. de Godoy Fróes-Salgado N.R. et al., Influence of the base and diluent monomer on network characteristics and mechanical properties of neat resin and composite materials, Odontology 2015, 103, 2, 160-168, DOI: 10.1007/s10266-014-0153-6.
- 6. Soles C.L., Chang F.T., Bolan B.A., Hristov H.A., Gidley D.W., Yee A.F., Contributions of the nanovoid structure to the moisture absorption properties of epoxy resins, J. Polym. Sci. Part B Polym. Phys. 1998, 36, 17, 3035-3048, DOI: 10.1002/(SICI)1099-0488(199812)36:17<3035::AID-POLB4>3.0.CO;2-Y.
- 7. Atai M., Nekoomanesh M., Hashemi S.A., Amani S., Physical and mechanical properties of an experimental dental composite based on a new monomer, Dent. Mater. 2004, 20, 7, 663-668, DOI: 10.1016/j.dental.2003.08.008.
- 8. Arima T., Hamada T., McCabe J.F., The effects of crosslinking agents on some properties of HEMA-based resins, J. Dent. Res. 1995, 74, 9, 1597-1601, DOI: 10.1177/00220345950740091501.
- 9. Krishnan V.K., Manjusha K., Yamuna V., Effect of diluent upon the properties of a visible-light-cured dental composite, J. Mater. Sci. Mater. Med. 1997, 8, 11, 703-706, DOI: 10.1023/A:1018592008152.
- 10. Indrani D.J., Cook W.D., Televantos F., Tyas M.J., Harcourt J.K., Fracture toughness of water-aged resin composite restorative materials, Dent. Mater. 1995, 11, 3, 201-207,DOI: 10.1016/0109-5641(95)80019-0.
- 11. Santerre J.P., Shajii L., Leung B.W., Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products, Crit. Rev. Oral Biol. Med. 2001, 12, 2, 136-151, DOI: 10.1177/ 10454411010120020401.
- 12. De Moraes R.R., Marimon J.L.M., Jochims Schneider L.F., Sinhoreti M.A.C., Correr-Sobrinho L., Bueno M., Effects of 6 months of aging in water on hardness and surface roughness of two microhybrid dental composites, J. Prosthodont. 2008, 17, 4, 323-326, DOI: 10.1111/j.1532-849X.2007.00295.x.
- 13. Gajewski V.E.S., Pfeifer C.S., Fróes-Salgado N.R.G., Boaro L.C.C., Braga R.R., Monomers used in resin composites: Degree of conversion, mechanical properties and water sorption/solubility, Braz. Dent. J. 2012, 23, 5, 508-514, DOI:10.1590/S0103-64402012000500007.
- 14. Szczesio-Wlodarczyk A., Domarecka M., Kopacz K., Sokolowski J., Bociong K., An evaluation of the properties of urethane dimethacrylate-based dental resins, Materials (Basel) 2021, 14, 11, 1-15, DOI: 10.3390/ma14112727.
- 15. Brożek R., Paszyńska E., Koczorowski R., Dorocka-Bobkowska B., Wchłanianie wody przez wybrane materiały polimerowe, stosowane w stałych i ruchomych protezach zębowych – badania eksperymentalne, Dent. Forum 2018, 46, 1, 25-30, DOI: 10.20883/df.2018.3.
- 16. Braden M., Causton E.E., Clarke R.L., Diffusion of water in composite filling materials, J. Dent. Res. 1976, 55, 5, 730-732, DOI: 10.1177/00220345760550050501.
- 17. Ferracane J.L., Hygroscopic and hydrolytic effects in dental polymer networks, Dent. Mater. 2006, 22, 3, 211-222, DOI: 10.1016/j.dental.2005.05.005.
- 18. Oysad H., Ruyter I.E., Water sorption and filler characteristics of composites for use in posterior teeth, J. Dent. Res. 1986, 65, 11, 1315-1318, DOI: 10.1177/00220345860650110601.
- 19. Cornelio R.B. et al., The influence of bis-EMA vs bis GMA on the degree of conversion and water susceptibility of experimental composite materials, Acta Odontol. Scand. 2014, 72, 6, 440-447, DOI: 10.3109/00016357.2013.856467.
- 20. Handbook of Epoxy Blends, Springer International Publishing, 2015, DOI: 10.1007/978-3-319-18158-5.
- 21. Gyo M., Nikaido T., Okada K., Yamauchi J., Tagami J., Matin K., Surface response of fluorine polymer-incorporated
- resin composites to cariogenic biofilm adherence, Appl. Environ. Microbiol. 2008, 74, 5, 1428-1435, DOI: 10.1128/ AEM.02039-07.
- 22. Sowa M., Przekora A., Pałka K., Microstructure and surface free energy of light-cured dental composites after their modification with liquid rubber, Eng. Biomater. 2022, May, 164, 9-15, DOI: 10.34821/eng.biomat.164.2022.9-15.
- 23. Vallittu P.K., The effect of void space and polymerization time on transverse strength of acrylic-glass fibre composite,
- J. Oral Rehabil. 1995, 22, 4, 257-261, DOI: 10.1111/j.1365-2842.1995.tb00083.x.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfae8633-991e-4c71-b4f4-4756f31858f0