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Abstract: This paper presents an analytical approach for solving the weighting matrices 
selection problem of a linear quadratic regulator (LQR) for the trajectory tracking ap-
plication of a magnetic levitation system. One of the challenging problems in the design 
of LQR for tracking applications is the choice of Q and R matrices. Conventionally, the 
weights of a LQR controller are chosen based on a trial and error approach to determine 
the optimum state feedback controller gains. However, it is often time consuming and 
tedious to tune the controller gains via a trial and error method. To address this problem, 
by utilizing the relation between the algebraic Riccati equation (ARE) and the Lagran-
gian optimization principle, an analytical methodology for selecting the elements of Q 
and R matrices has been formulated. The novelty of the methodology is the emphasis on 
the synthesis of time domain design specifications for the formulation of the cost func-
tion of LQR, which directly translates the system requirement into a cost function so that 
the optimal performance can be obtained via a systematic approach. The efficacy of the 
proposed methodology is tested on the benchmark Quanser magnetic levitation system 
and a detailed simulation and experimental results are presented. Experimental results 
prove that the proposed methodology not only provides a systematic way of selecting the 
weighting matrices but also significantly improves the tracking performance of the sys-
tem.  
Key words: algebraic Riccatti equation, linear quadratic regulator, magnetic levitation 
system, weighting matrices, command following, cost function 

 
 
 

1. Introduction 
 
 In the last few decades, classical optimal control theory has evolved to formulate the well-
known optimal state feedback controller called LQR, which minimizes the deviation in state 
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trajectories of a system while maintaining a minimum control effort. The LQR design is con-
sidered the foundation of the Linear Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR). 
Due to their inherent robustness and stability properties, such as a gain margin of (!6, ∞) dB 
and a phase margin of (!60E, 60E), LQR finds its application in many engineering and scien-
tific domains [1-3]. In the last two decades several investigations have been reported on LQR, 
namely, self-adjusting LQR [4], switched LQR [5], hybrid LQR [6] and fuzzy LQR [7]. In 
addition, LQR techniques have been successfully implemented for a large number of complex 
systems such as the double inverted pendulum [8], fuel cell systems [9], vibration control 
system [10], electric vehicles [11], and aircraft [12].  
 However, two main issues of the LQR problem have been the subject of investigation 
since the 1960s until the present day: the solution of ARE, and the choice of Q and R weight-
ing matrices [13]. The two tasks are known to be strongly time dependent and based on certain 
operational conditions. Even if all of the control strategies are optimal in nature, different 
values of Q and R will ultimately end up with a different system response, which indicates that 
the response is non-optimal in a true sense. Conventional optimization methods, such as the 
gradient search method, used for designing the state feedback controller are restricted to the 
eigen values of the linear system matrix that not only increases the difficulty but also con-
sumes long time to find the global optimum solution [14]. Hence, researchers have considered 
employing evolutionary computation (EC) techniques for solving the LQR optimization pro-
blem. For instance, in [15] genetic algorithm (GA) has been used for optimally selecting the 
weighting matrices of LQR for state feedback control design of multi machine power system. 
GA based LQR design for ball and beam position control application has been reported in 
[16], and the results are reported to be encouraging. Similarly, the stabilizing controller design 
for inverted pendulum is solved using particle swarm optimization (PSO) in [17]. In [18] the 
performances of GA, PSO and APSO for tracking control application of single inverted 
pendulum are compared and reported that APSO yields better response than those of GA and 
PSO. However, the fundamental limitations of EC techniques such as high dependency on the 
parameters of optimization algorithm and time of computation limit the use of EC algorithms 
for solving real world optimization problems. 
 Therefore, in this paper, as an alternative to solve weight selection problem of LQR, we 
propose an analytical approach by making use of the relationship between the ARE and La-
grangian optimization principle. The advantages of the proposed methodology are twofold. 
First, it significantly reduces the time needed for optimal selection of Q and R matrices with 
the aid of simple mathematical expressions. Second, the analytical approach has the ability to 
translate the system’s performance objectives in time domain into cost function which makes 
the design of LQR not only simple but also modular. 
 The rest of the paper is organized as follows. The problem formulation is presented in Sec-
tion 2. Section 3 details the analytical procedure for selecting the Q and R matrices based on 
time domain specifications. System description and the mathematical modelling of magnetic 
levitation plant is given in Section 4. Simulation results of trajectory tracking response are 
given in Section 5, and the experimental results are detailed in Section 6. The paper ends with 
the concluding remarks in Section 7. 
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2. Problem formulation 
 
 Consider an LTI system  
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where A 0 RnHn, B 0 RnHm, C 0 RpH n, D 0 RpHm, are system matrix, input matrix, output mat-
rix and feed forward matrix, respectively. X is the state vector, u is the control input vector, 
and y is the output vector. The conventional LQR problem is to obtain the control input u* 
which minimizes the following cost function. 
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where Q = Q T is a positive semidefinite matrix that penalizes the departure of system states 
from the equilibrium, and R = RT is a positive definite matrix that penalizes the control input 
[19]. The solution of the LQR problem, the optimal control gain K, can be determined via the 
following Lagrange multiplier based optimization technique. 

  .1 PBRK T−=                         (3) 

 The optimal state feedback control gain matrix K of LQR can be found by solving the fol-
lowing ARE. 

  ,01 =−++ − PBPBRQPAPA TT                         (4) 

where P 0 RnHn is the solution of ARE. The elements of weighting matrices Q and R are im-
portant components of an LQR optimization process. The compositions of Q and R elements 
have great influence not only on system performance but also on system input [20-21]. The 
number of elements of Q and R matrices depends on the number of state variable (n) and the 
number of input variable (m), respectively. If the weighting matrices are chosen as diagonal 
matrices, the quadratic performance index is simply a weighted integral of the square of the 
states and inputs [22]. Commonly, a trial and error method has been used to select the ele-
ments of Q and R matrices. This method is cumbersome, time consuming and does not result 
in optimum performance. In order to address this issue, in the following section we propose an 
analytical procedure for selecting the weight matrices of LQR based on the time domain spe-
cifications of the system to be controlled. 

 
3. Analytical approach for weighting matrices selection of LQR 

 Consider the third order LTI system represented in controllable canonical form,  
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 Designing a full state feedback control via LQR requires the minimization of the cost func-
tion given in (2), which places the weight not only on control input but also on states of the 
system. Hence, the state feedback control law is given by 

   .xKu −=       (6) 

 By solving the ARE, the transformation matrix (P) between states and co-states can be ob-
tained. One of the essential features of LQR is that Q should be a symmetric positive semi-
definite matrix and R should be a positive definite matrix. So, the weighting matrices Q and R, 
and the solution of ARE are chosen as 
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 Using the Lagrange optimization technique, the state feedback gain matrix K can be cal-
culated as 
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 The elements of P matrix such as p13, p23 and p33 are obtained using the ARE given in (4). 

.0

)(2

)(2

2

3
2
33

2
31

333323

3323

2
31

323333232213

3313

2
31

3133331312

3323

2
31

323333232213

2
2
23

2
31

233212

2313

2
31

3123321311

3313

2
31

3133331312

2313

2
31

3123321311

1
2
13

2
31

3113

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−

++

−

++++

−

+++

−

++++

+−

++

−

+++

−

+++

−

+++

+−

+

qp
r

B

pAp

pp
r

B

ApAppp

pp
r

B

ApApp

pp
r

B

ApAppp

qp
r

B

pAp

pp
r

B

ApApp

pp
r

B

ApApp

pp
r

B

ApApp

qp
r

B

Ap

 

(10) 

 

Brought to you by | Uniwersytetu Technologicznego w Szczecinie - Biblioteka Glówna Zachodniopomorskiego
Authenticated

Download Date | 6/23/16 11:39 AM



Vol.  65 (2016)       Algebraic Riccati equation for optimal LQR to tracking control MagLev system 155 

3.1. Closed loop response of the system 
 The closed loop state equation of the system can be written as 

  ( ) [ ] ( ) [ ] ( ).1 txPBBRAtxBKAtx T−−=−=&                                (11) 

 According to direct substitution method for the pole placement controller design, the actual 
characteristic equation of the system is compared with the desired characteristic equation to 
obtain the expressions for p13, p23 and p33 in terms of state model and design specifications in 
time domain. Therefore, the actual characteristic equation of the system can be represented as 

  .0=+− BKAIλ       (12) 

 Substitution of the corresponding system matrix A, input matrix B and the state feedback 
controller gain matrix K in the above characteristic equation results in                     
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The general form of desired characteristic equation of the third order system is 
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 Comparing Equations (13) and (14), the expressions for p13, p23 and p33 can be obtained as 
given below 
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From the element available at first row and first column of Equation (10), 
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Substituting (15) into (18) results in 
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By rearranging, the expression for q1/r can be obtained as 
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Similarly, from (10), the element available at third row and first column can be rearranged as 
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 The element in second row second column of ARE (10) can be rearranged in terms of 
known quantities such as p13, p23 and p33 by substituting (23) into the following equation 
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Substituting p13, p23 and p33 into the above equation,   
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Rearranging (26), the expression for q2/r can be obtained as given below. 
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Likewise, the element available in third row and third column of ARE (10) can be written as, 
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Substituting (16) and (17) into the above equation, 
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By reordering the above equation, 
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 The elements of Q matrix can be obtained from the desired specifications by fixing the va-
lue of R matrix which is taken as scalar in the present example. The complete design procedu-
re of LQR weight selection based on time domain specification is summarized below. 
 
3.2. Design procedure 
  1) Obtain the mathematical model of the system in controllable canonical form. 
  2) Specify the required damping ratio (*) and natural frequency (Tn) of the system. 
  3) Represent the state feedback gain matrix K in terms of solution of ARE. 
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  4) Determine the actual characteristic equation of the system. 
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  5) Evaluate the desired characteristic equation of the system from the given time domain 
specifications. 
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6) Compare the desired characteristic equation with the actual characteristic equation and ob-
tain the elements of P matrix 
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7) Substitute the values of p13, p23 and p33 in ARE and obtain the expression for q1/r, q2/r and 
q3/r . 
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  8) Fix the value of r and find the elements of Q matrix using the above expressions. 
  9) Calculate the state feedback gain matrix (K) using the Lagrange multiplier based optimiza-

tion technique. 
 One of the distinguishing features of the proposed analytical methodology, compared to 
the conventional pole placement techniques, is that it provides simple mathematical expres-
sions by correlating the Q and R matrices elements with the design specifications and system 
matrices such that the elements of weighting matrices can be systematically computed. More-
over, by synthesizing the cost function with the time domain specifications it results in optimal 
response between control input and speed of response of the system. Hence, it largely reduces 
the time required to tune the values of weighting matrices in obtaining the optimal perform-
ance of the controller. To assess the performance of the proposed approach, a benchmark 
magnetic levitation system is chosen for experimentation and the mathematical modelling of 
the system and LQR controller design based on the analytical approach are explained in the 
following section.  
 
 

4. Magnetic levitation system 
 
 Magnetic levitation (maglev) systems have received wide attention recently because of 
their practical importance in many engineering systems such as high-speed maglev passenger 
trains, frictionless bearings, levitation of wind tunnel models, vibration isolation of sensitive 
machinery, levitation of molten metal in induction furnaces, and levitation of metal slabs dur-
ing manufacturing [23]. Magnetic levitation technology reduces the physical contact between 
moving and stationary parts and in turn eliminates the friction problem. Maglev systems are 
inherently nonlinear, unstable and are described by highly nonlinear differential equations 
which present additional difficulties in controlling these systems. So the design of feedback 
controller for regulating the position of the levitated object is always a challenging task.  
 
4.1. System model 
 Maglev system consists of an electromagnet, a steel ball, a ball post, and a ball position 
sensor. The schematic diagram of the magnetic levitation system is shown in Figure 1, and the 
parameters of the maglev system are given in Table 1. The entire system is encased in a rec-
tangular enclosure which contains three distinct sections. The upper section contains an elec-
tromagnet, made of a solenoid coil with a steel core. The middle section consists of a chamber 
where the ball suspension takes place. One of the electro magnet poles faces the top of a black 
post upon which a one inch steel ball rests. A photo sensitive sensor embedded in the post 
measures the ball elevation from the post. The last section of maglev system houses the signal 
conditioning circuitry needed for light intensity position sensor. The entire system is decom-
posed into two subsystems, namely, mechanical subsystem and electrical subsystem. The coil 
current is adjusted to control the ball position in the mechanical system, whereas the coil 
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voltage is varied to control the coil current in an electrical system [24]. Thus, the voltage 
applied to the electromagnet indirectly controls the ball position. In the following section, the 
nonlinear mathematical model of the maglev system is obtained and linearized around the 
operating region to design a stabilizing controller. 
 

 
Fig. 1. Magnetic levitation system diagram 

 
Table 1. System parameters 

Symbol Description Value 

Lc coil inductance 412.5 mH 

Rc coil resistance 10 Ω 

Nc number of turns in the coil wire 2450 

lc coil length 0.0825 m 

rc coil steel core radius 0.008 m 

Rs current sense resistance 1 Ω 

Km electromagnet force constant 6.53 E-005 N.m2/A2 

rb steel ball radius 1.27 E-002 m 

Mb steel ball mass 0.068 kg 

Kb ball position sensor sensitivity 2.83 E-003 m/V 

g gravitational constant 9.81 m/s2 

 
4.2. Equation of motion of a ball 
i) Electrical system modelling 
 From Figure 2, using Kirchoff’s voltage law, the following first order differential equation 
can be obtained. 
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ii)Electro-mechanical system modelling 
 Force applied on the ball due to gravity can be expressed as 

  .gMF bg =       (33) 

 The force created by the coil is given as 
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Fig. 2. Schematic diagram of the Maglev plant 

 
Therefore, the total external force experienced by the ball is the sum of the gravity and coil 
forces.  
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Applying Newton’s second law, we obtain the following equation of motion of the ball. 
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where xb0 and Ic0 are the ball position and coil current at equilibrium point. Considering the 
ball position (xb), velocity of the ball (dxb/d t) and coil current (Ic) as the state variables the 
following state model of the system is obtained.  
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 The objective of the LQR control strategy is to levitate the ball in mid-air and make it track 
the reference trajectory, while maintaining minimum control input. Figure 3 illustrates the 
closed loop structure of the analytically tuned LQR control scheme. As the implementation of 
full state feedback controller using LQR requires full state vector, a second order derivative 
filter is designed to estimate the velocity of the ball. The transfer function of the derivative 
filter is given by 
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 Empirically, the damping ratio (. ) and cut off frequency (Tcf) of the filter are chosen as 
0.8 and 314.57 rad/sec respectively.  
 

 
 

Fig. 3. LQR control scheme for maglev plant 
 
 

5. Simulation results 
 
 To assess the efficacy of the proposed methodology, simulation is carried out in MAT-
LAB. By substituting the parameter values of maglev system from Table 1, into (37), the fol-
lowing numerical state space model is obtained.  
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 The open loop eigen values of the system are found to be –57.87, –26.67 and 57.18. The 
positive real part of eigen value suggests that the open loop system is unstable in nature and 
implies the necessity of a feedback controller. To assess the step response of the system, we 
have taken the damping ratio of the desired system to be 0.75 and a settling time of 0.5 s. 
Since the given system has only one input, the voltage applied to coil, the value of R matrix is 
chosen as 0.001. Then, the corresponding Q matrix obtained via the proposed methodology is 

  .
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 The optimal state feedback controller gain which satisfies the given time domain specifi-
cation is 

  [ ].29.002.752.1696 −−−=K  

 Figure 4 depicts the step response of the system, and it can be observed that the settling 
time of the response is 0.4 s, which proves that the design is satisfactory. Moreover, the ball 
position response yields zero steady state error. Further to test the convergence of the analyti-
cal methodology, three different values of damping ratio and natural frequency are considered 
to evaluate the impulse response of the system. Values of time domain specification consid-
ered for the design and the corresponding weighting matrices calculated according to the de-
sign procedure are given in Table 2. One can note that the value of R can be set to any scalar 
value because the approach does not place any constraint on it.  
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Fig. 4. Step response of LQR design 
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Table 2. Weighting matrices and controller gains for R = 0.001 

ts * %Mp Q K Closed loop 
eigen values 

0.28 s 0.65 6.55 
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Fig. 5. Impulse response of ball position 
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Fig. 6. Control signal 
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 The impulse response of the system for three design requirements in time domain is shown 
in Figure 5. It is interesting to note that both the settling time and overshoot of the response 
exactly meet the design requirement. From Figure 6, which shows the amount of control input 
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given to the plant, it is worth to note that the maximum value of coil voltage required to 
levitate the ball is contained well below 2 V and it does not reach the saturation level.  
 To assess the robustness of LQR design, the Bode plot of the system for three natural 
frequencies is plotted and shown in Figure 7. Positive gain margins of all the three cases suggest 
that the system is stable, and it can also accommodate the disturbances present in the system. 
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Fig. 7. Bode plot of the closed loop system 
 
5.1. Trajectory tracking 
 The ability of the controller to track the reference signal is tested by providing a sinusoidal 
signal with a magnitude of "1 mm. Figures 8-10 show the response of the control scheme for 
the three design requirements given in Table 2. From the tracking response, it is observed that 
the error between actual trajectory and reference trajectory decreases as the settling time de-
creases.  
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Fig. 8. Sine wave trajectory for ts = 0.5 and * = 0.75 
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Fig. 9. Sine wave trajectory for ts = 0.4 and * = 0.7 
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Fig. 10. Sine wave trajectory for ts = 0.28 and * = 0.65 

 
 
 

6. Experimental validation 
 
 The experimental set up, as shown in Figure 11, consists of a personal computer and  
a Quanser Magnetic levitation plant. The controller is implemented using a 32 bit personal 
computer. The proposed control algorithm is realized using QUARC, which is a real time 
algorithm similar to C like language. The Q8 USB hardware-in-loop (HIL) data acquisition 
board has 8 digital inputs and 8 pulse width modulated (PWM) digital outputs, and it is cap-
able of reaching 4 kHz sampling rate. In addition, the system contains a Volt-PAQ power 
amplifier, which provides a regulated ±10 V at 1 A, to amplify the control signal given to the 
electromagnet. In order to attenuate the high frequency noise current, a derivative low pass 
filter with a cut off frequency of 80 Hz is added to the ball position sensor output.  
 Figure 12, which shows the trajectory tracking response of the plant for a sinusoidal test 
signal of "1 mm amplitude at a frequency of 1 Hz, accentuates that the optimal controller 
could provide stable regulation over the entire operating point. Figure 13 illustrates the re-
sponse of coil current, which tracks the specified command to make the ball follow the refe-
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rence trajectory. Figure 14, which shows the amount of coil voltage given to the electromag-
net, underscores that minimum control input is always required to levitate the ball. Figure 15 
shows the tracking error, which is the difference between actual trajectory and reference 
trajectory. To assess the closeness of reference tracking, four performance indices namely, 
IAE, ISE, ITAE and ITSE, are computed and given in Table 3. The minimum value of integral 
errors accentuate that the controller yields good tracking ability while maintaining minimum 
control input.  

 

 
Fig. 11. Connection diagram of maglev system 
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Fig. 12. Sinusoidal trajectory 

 
Table 3. Integral performance indices of tracking error 

IAE ITAE ISE ITSE 
0.0039 0.116 0.000016 0.000017 
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Fig. 13. Coil current 
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Fig. 14. Coil voltage 

 

0 5 10 15 20 25 30
-5

0

5

10
x 10-3

Time (sec)

E
rr

or
 (m

m
)

 
Fig. 15. Trajectory tracking error 

 
 

7. Conclusions 
 
 In this paper, an analytical approach for selecting the weighting matrices of LQR for  
a third order system based on the time domain specification has been proposed and imple-
mented for controlling the ball position of a magnetic levitation system. Normally, the Q and 
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R matrices of LQR are chosen based on iterative approach which further increases the com-
plexity of the system to implement the LQR in real time. Therefore, to avoid the tedious 
manual tuning of LQR, an analytical methodology, by making use of ARE and the Lagrangian 
optimization technique, has been formulated. The novelty of the methodology is that it 
exploits the relation between the solution of ARE and the state model of the system with the 
design requirement in time domain specifications and provides a systematic way of selecting 
the elements of Q and R matrices. The effectiveness of the methodology has been tested on the 
benchmark Quanser magnetic levitation system for reference following. Three different test 
cases of damping ratio and settling time have been assessed and the performance of the algo-
rithm in meeting the design requirement has been validated. In our future work, we also intend 
to extend the methodology to a multi input and multi output system and assess the robustness 
of the algebraically tuned LQR control scheme against external disturbances and model un-
certainty.  
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