PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Revisiting the Open-End Reflection Coefficient and Turbulent Losses in an Organ Pipe with Low Mach Number Flow

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The reflection coefficient of the open end belongs among the essential parameters in the physical description of a flue organ pipe. It leads directly to practical topics such as the pipe scaling. In this article, sound propagation is investigated inside an organ pipe with the most intense mean flow that is achievable under musically relevant conditions. A theoretical model is tested against the experimental data to obtain a suitable formula for the reflection coefficient when a non-negligible flow through the open end is considered. The velocity profile is examined by means of particle image velocimetry. A fully developed turbulent profile is found and interactions of the acoustic boundary layer with the turbulent internal flow are discussed. A higher value of the end correction than expected from the classical result of Levine and Schwinger is found, but this feature shall be associated with the pipe wall thickness rather than the mean flow effects.
Rocznik
Strony
197--204
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
  • Academy of Performing Arts in Prague, Musical Acoustics Research Centre, Prague, Czech Republic
autor
  • Academy of Performing Arts in Prague, Musical Acoustics Research Centre, Prague, Czech Republic
Bibliografia
  • 1. Ando Y. (1969), On the sound radiation from semi-infinite circular pipe of certain wall thickness, Acta Acustica united with Acustica, 22 (4): 219-225.
  • 2. Blackstock D. T. (2000), Fundamentals of Physical Acoustics, Wiley & Sons, New York.
  • 3. Cargill A. (1982), Low frequency acoustic radiation from a jet pipe – a second order theory, Journal of Sound and Vibration, 83 (3): 339-354, doi: 10.1016/S0022-460X(82)80097-7.
  • 4. da Silva A. R., Greco G. F. (2019), Computational investigation of plane wave reflections at the open end of subsonic intakes, Journal of Sound and Vibration, 446: 412-428, doi: 10.1016/j.jsv.2019.01.044.
  • 5. da Silva A. R., Scavone G. P., Lenzi A. (2010), Numerical investigation of the mean flow effect on the acoustic reflection at the open end of clarinet-like instruments, Acta Acustica united with Acustica, 96 (5): 959-966.
  • 6. Fabre B. (2016), Flute-like instruments, [in:] Chaigne A., Kergomard J., Acoustics of Musical Instruments. Modern Acoustics and Signal Processing, pp. 559-606, Springer: New York, NY, doi: 10.1007/978-1-4939-3679-3_10.
  • 7. Fletcher N., Rossing T. (1998), The Physics of Musical Instruments, Springer: New York.
  • 8. Hamilton M. F., Blackstock D. T. [Eds] (2008), Nonlinear Acoustics, Acoustical Society of America: Melville, NY.
  • 9. Hirschberg A., Hoeijmakers M. (2014), Comments on the low frequency radiation impedance of a duct exhausting a hot gas, The Journal of the Acoustical Society of America, 136 (2): EL84-EL89, doi: 10.1121/1.4885540.
  • 10. Hruška V., Dlask P. (2017), Connections between organ pipe noise and shannon entropy of the airflow: Preliminary results, Acta Acustica united with Acustica, 103 (6): 1100-1105, doi: 10.3813/AAA.919137.
  • 11. Hruška V., Dlask P. (2019), Investigation of the sound source regions in open and closed organ pipes, Archives of Acoustics, 44 (3): 467-474, doi: 10.24425/aoa.2019.129262.
  • 12. Hruška V., Dlask P., Guštar M. (2019), Nondestructive measurement of the pressure waveform and the reflectioncoefficient in a flue organ pipe, [in:] Proceedings of the International Symposium on Music Acoustics 2019 – ISMA 2019.
  • 13. Jang S.-H., Ih J.-G. (1998), On the multiple microphone method for measuring in-duct acoustic properties in the presence of mean flow, The Journal of the Acoustical Society of America, 103 (3): 1520-1526, doi: 10.1121/1.421289.
  • 14. Lautrup B. (2011), Physics of Continuous Matter, Taylor & Francis Inc.
  • 15. Levine H., Schwinger J. (1948), On the radiation of sound from an unflanged circular pipe, Physical Review, 73 (4): 383-406, doi: 10.1103/PhysRev.73.383.
  • 16. Mickiewicz W. (2015), Particle image velocimetry and proper orthogonal decomposition applied to aerodynamic sound source region visualization in organ flue pipe, Archives of Acoustics, 40 (4): 475-484, doi: 10.1515/aoa-2015-0047.
  • 17. Munt R. (1990), Acoustic transmission properties of a jet pipe with subsonic jet flow: I. The cold jet reflection coefficient, Journal of Sound and Vibration, 142 (3): 413-436, doi: 10.1016/0022-460X(90)90659-N.
  • 18. Nomura Y., Yamamura I., Inawashiro S. (1960), On the acoustic radiation from a flanged circular pipe, Journal of the Physical Society of Japan, 15 (3): 510-517, doi: 10.1143/JPSJ.15.510.
  • 19. Peters M. C. A. M., Hirschberg A., Reijnen A. J., Wijnands A. P. J. (1993), Damping and reflection coefficient measurements for an open pipe at low mach and low helmholtz numbers, Journal of Fluid Mechanics, 256: 499-534, doi: 10.1017/S0022112093002861.
  • 20. Raffel M., Willert C. E., Wereley S. T., Kompenhans J. (2007), Particle Image Velocimetry. Springer: Berlin Heidelberg.
  • 21. Rienstra S. (1983), A small strouhal number analysis for acoustic wave-jet flow-pipe interaction, Journal of Sound and Vibration, 86 (4): 539-556, doi: 10.1016/0022-460X(83)91019-2.
  • 22. Ronneberger D. (1975), Precise measurement of the sound attenuation and the phase velocity in pipes with a flow with regard to the interaction between sound and turbulence [in German: Genaue Messung der Schalldämpfung und der Phasengeschwindigkeit in durchströmten Rohren im Hinblick auf die Wechselwirkung zwischen Schall und Turbulenz], Universität Göttingen.
  • 23. Schlichting H., Gersten, K. (2016), Boundary-Layer Theory. Springer-Verlag GmbH.
  • 24. Weng C., Boij S., Hanifi A. (2013), The attenuation of sound by turbulence in internal flows, The Journal of the Acoustical Society of America, 133 (6): 3764-3776, doi: 10.1121/1.4802894.
  • 25. Yoshikawa S., Tashiro H., Sakamoto Y. (2012), Experimental examination of vortex-sound generation in an organ pipe: a proposal of jet vortex-layer formation model, Journal of Sound and Vibration, 331 (11): 2558-2577, doi: 10.1016/j.jsv.2012.01.026.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfae672a-bd22-4486-934c-9ef6f0d36581
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.