Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The results of studies on a trajectory-tracking problem affected by false data injection attacks (FDIAs) and internal and external uncertainties are presented in this paper. In view of the FDIAs experienced by the system, we compensate for the serious navigation deviation caused by malicious attacks by designing an online approximator. Next, we study the internal and external uncertainties introduced by environmental factors, system parameter fluctuations, or sensor errors, and we design adaptive laws for these uncertainties to approximate their upper bounds. To further enhance the response velocity and stability of the system, we introduce finite-time technology to ensure that the unmanned underactuated surface vessels (USVs) reach the predetermined trajectory-tracking target within finite time. To further reduce the update frequency of the controller, we introduced event-triggered control (ETC) technology. This saves the system’s communication resources and optimizes the system. Through Lyapunov stability theory, a strict and complete stability analysis is provided for the control scheme. Finally, the effectiveness of the control scheme is verified using two sets of simulations.
Czasopismo
Rocznik
Tom
Strony
114--126
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- School of Ocean Information Engineering, Jimei University, Xiamen, China
autor
- College of Navigation, Jimei University, Xiamen 361021, Fujian, China
autor
- Department of Youth League Committee, Jinan Vocational College of Engineering, Jinan, China
Bibliografia
- 1. S. L. Yu, J. S. Lu, G. B. Zhu and S. J. Yang, ‘Event-triggered finite-time tracking control of underactuated MSVs based on neural network disturbance observer’, Ocean Engineering, 2022, doi: 10.1016/j.oceaneng.2022.111169.
- 2. X. F. Meng, G. C. Zhang and Q. Zhang, ‘Event-triggered trajectory tracking control of underactuated Surface vessels with performance-improving mechanisms under input saturation and actuator faults’, Transactions of the Institute of Measurement and Control, 2023, doi:10.1177/01423312231187008.
- 3. Z. H. Yu and W. L. Chin, ‘Blind false data injection attack using PCA approximation method in smart grid,’ IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1219–1226, 2015, doi: 10.1109/TSG.2014.2382714.
- 4. Q. T. Yin, Y. X. Bian, J. Du, W. Zhao and S. B. Yang, ‘Dual backstepping variable structure switching control of bounded uncertain nonlinear system’, International Journal of Systems Science, vol. 53, no. 11, pp. 2341–2357, 2022, doi: 10.1080/00207721.2022.2051094.
- 5. R. Rout, R. X. Cui and W. S. Yan, ‘Sideslip-compensated guidance-based adaptive neural control of marine Surface vessels’, IEEE Transactions on Cybernetics, vol. 52, no. 5, pp. 2860–2871, 2022, doi: 10.1109/TCYB.2020.3023162.
- 6. D. Menges and A. Rasheed, ‘An environmental disturbance observer framework for autonomous Surface vessels’, Ocean Engineering, vol. 285, 2023, doi: 10.1016/j.oceaneng.2023.115412.
- 7. C. Zhang and S. H. Yu, ‘Disturbance observer-based prescribed performance super-twisting sliding mode control for autonomous surface vessels’, ISA Transactions, vol. 135, pp. 13–22, 2023, doi: 10.1016/j.isatra.2022.09.025.
- 8. X. W. Wang, J. Liu, H. J. Peng, X. W. Qie, X. D. Zhao and C. Lu ‘A simultaneous planning and control method integrating APF and MPC to solve autonomous navigation for USVs in unknown environments’, Journal of Intelligent & Robotic Systems, vol. 105, no. 2, 2022, doi: 10.1007/s10846-022-01663-8.
- 9. X. Han and X. K. Zhang, ‘Tracking control of ship at sea based on MPC with virtual ship bunch under Frenet frame’, Ocean Engineering, 2022, doi: 10.1016/j.oceaneng.2022.110737.
- 10. W. R. Wang, J. H. Yan, H. Wang, H. L. Ge, Z. Y. Zhu and G. J. Yang, ‘Adaptive MPC trajectory tracking for AUV based on Laguerre function’, Ocean Engineering, 2022, doi: 10.1016/j.oceaneng.2022.111870.
- 11. E. Tatlicioglu, B. M. Yilmaz, A. Savran and M. Alci, ‘Adaptive fuzzy logic with self-adjusting membership functions based tracking control of surface vessels’, Ocean Engineering, 2022, doi: 10.1016/j.oceaneng.2022.111129.
- 12. X. F. Meng, G. C. Zhang and Q Zhang, ‘Robust Adaptive neural network integrated fault-tolerant control for underactuated surface vessels with finite-time convergence and event-triggered inputs’, Mathematical Biosciences and Engineering, vol. 20, no. 2, pp. 2131–2156, 2023, doi: 10.3934/mbe.2023099.
- 13. Y. Fang, E, Zergeroglu, M. S. de. Queiroz and D. M. Dawson, ‘Global output feedback control of dynamically positioned surface vessels: an adaptive control approach. Mechatronics’, Mechatronics, vol. 14, no. 4, pp. 341–356, 2004, doi: 10.1016/S0957-4158(03)00064-3.
- 14. G. B. Zhu, Y. Ma, Z. X. Li, R. Malekian and Sotelo M, ‘Adaptive neural output feedback control for MSVs with predefined performance’, IEEE Transactions on Vehicular Technology, vol. 70, no. 4 pp. 2994–3006, 2021, doi: 10.1109/TVT.2021.3063687.
- 15. G. B. Zhu, Y. Ma and S. L. Hu, ‘Single-parameter-learningbased finite-time tracking control of underactuated MSVs under input saturation’, Control Engineering Practice, 2020, doi: 10.1016/j.conengprac.2020.104652.
- 16. Y. L. Yu, C. Guo and T. S. Li, ‘Finite-time LOS path following of unmanned surface vessels with time-varying sideslip angles and input saturation’, IEEE-ASME Transactions on Mechatronics, vol. 27, no. 1, pp. 463–474, 2022, doi: 10.1109/TMECH.2021.3066211.
- 17. M, Van, V. T. Do, M. O. Khyam and Do XP, ‘Tracking control of uncertain surface vessels with global finitetime convergence’, Ocean Engineering, 2021, doi: 10.1016/j.oceaneng.2021.109974.
- 18. X. F. Meng, G. C. Zhang and B. Han, ‘Fault-tolerant control of underactuated MSVs based on neural finite-time disturbance observer: An Event-triggered Mechanism’, Journal of the Franklin Institute, 2024, doi: 10.1016/j.jfranklin.2024.01.004.
- 19. Y. J. Deng, X. K. Zhang, N. Im, G. Q. Zhang and Q. Zhang, ‘Model-based event-triggered tracking control of underactuated surface vessels with minimum learning parameters’, IEEE Transactions on Neural Networks and Learning Systems’, vol. 31, no. 10, pp. 4001–4014, 2020, doi: 10.1109/TNNLS.2019.2951709.
- 20. G. B. Zhu, Y. Ma and S. L. Hu, ‘Event-triggered Adaptive PID fault-tolerant control of underactuated ASVs under saturation constraint’, IEEE Transactions on Systems Man Cybernetics-Systems, vol. 53, no. 8, pp. 4922–4933, 2023, doi: 10.1109/TSMC.2023.3256538.
- 21. N. Feng, D. F. Wu, H. L. Yu, A. S. Yamashita and Y. Q. Huang, ‘Predictive compensator based event-triggered model predictive control with nonlinear disturbance observer for unmanned surface vehicle under cyberattacks’, Ocean Engineering, vol. 259, 2022, doi: 10.1016/j.oceaneng.2022.111868.
- 22. Y. X. Zheng, L. Zhang, B. Huang and Y. M. Su, ‘Distributed secure formation control for autonomous surface vessels by performance adjustable event-triggered mechanism International Journal of Robust and Nonlinear Control, vol. 33, no. 14, pp. 8490–8507, 2023, doi: 10.1002/rnc.6832.
- 23. G. Q. Zhang, X. J. Dong, Q. H. Shan and W. D. Zhang, ‘Event-triggered robust adaptive control for unmanned surface vehicle in presence of deception attacks’, Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering, vol. 237, no. 7, pp. 1266–1280, 2023, doi: 10.1177/09596518231153437.
- 24. T. I. Fossen, Handbook of marine craft hydrodynamics and motion control, 2011.
- 25. Y. Ma, G. B. Zhu and Z. X. Li, ‘Error-driven-based Nonlinear feedback recursive design for adaptive NN trajectory tracking control of surface ships with input saturation’, IEEE Intelligent Transportation Systems Magazine, 2019, vol. 11, no. 2, pp. 17–28, doi: 10.1109/MITS.2019.2903517.
- 26. K. X. Huang, C. J. Zhou, Y. Q. Qin and W. X. Tu, ‘A gametheoretic approach to cross-layer security decision-making in industrial cyber-physical systems’, IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 2371–2379, 2020, doi: 10.1109/TIE.2019.2907451.
- 27. S. H. Yu, X. H. Yu, B. Shirinzadeh and Z. H. Man, ‘Continuous finite time control for robotic manipulators with terminal sliding mode’, Automatica, vol. 41, no. 11, pp. 1957–1964, 2005, doi: 10.1016/j.automatica.2005.07.001.
- 28. M. M. Polycarpou, ‘Stable adaptive neural control scheme for nonlinear systems’, IEEE Transactions on Automatic Control, vol. 41, no. 3, pp. 447–451, 1996, doi:10.1109/9.486648.
- 29. X. F. Meng, G. C. Zhang, Q. Zhang and B. Han, ‘Eventtriggered adaptive command-filtered trajectory tracking control for underactuated surface vessels based on multivariate finite-time disturbance observer under actuator faults and input saturation’, Transactions of the Institute of Measurement and Control, 2024, doi:10.1177/01423312231195657.
- 30. R. Skjetne, T. I. Fossen and P. V. Kokotovic, ‘Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory’, Automatica, vol. 41, no. 2, pp. 289–298, 2005, doi: 10.1016/j.automatica.2004.10.006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfa5dc77-5983-4d90-b77d-b0c31e9b804f