PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Delamination properties of the human thoracic arterial wall with early stage of atherosclerosis lesions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work is to determine mechanical properties of interfaces between layers of the human thoracic aortic wall with early stages of atherosclerosis lesions. Circumferential (n = 48) and axial (n = 15) specimens have been prepared and the mechanical properties of the interfaces between the layers have been determined on the basis of the peeling test. The results show that the mechanical and dissection properties of the interfaces between the layers depend on the direction of the tests. The results confirm that the early stage of atherosclerosis does not affect the mechanical parameters of the layer interfaces and does not affect resistance of the vessel wall to delamination.
Rocznik
Strony
229--238
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Wroclaw University of Technology, Faculty of Mechanical Engineering, Wrocław, Poland
Bibliografia
  • 1. Becker A, Epple M., Muller K.M., Schmitz J., 2004, A comparative study of clinically well-characterized human atherosclerotic plaques with histological, chemical and ultrastructural methods, Journal of Inorganic Biochemistry, 98, 12, 2032-2038
  • 2. Carmo M., Colombo L., Bruno A., Corsi F.R., Roncoroni L., Cuttin M.S., Radice F., Mussini E., Settembrini P.G., 2002, Alteration of elastin, collagen and their cross-links in abdominal aortic aneurysm, European Journal of Vascular and Endovascular Surgery, 23, 6, 543-549
  • 3. Gąsior-Głogowska M., Komorowska M., Hanuza J., Ptak M., Kobielarz M., 2011, Structural alteration of collagen fibers-spectroscopic and mechanical studies, Acta of Bioengineering and Biomechanics, 12, 4, 55-62
  • 4. Gregory D.E., Bae W.C., Sah R.L., Masuda K., 2012, Anular delamination strength of human lumbar intervertebral disc, European Spine Journal, 21, 1716-1723
  • 5. Holzapfel G.A., 2008a, Artierial Tissue in Health and Disease: Experimental Data, CollagenBased Modeling and Simulation, Including Aortic Dissection, Lecture Notes, Graz University of Technology, Austria,
  • 6. Holzapfel G.A., 2008b, Chapter no. 11, Collagen in arterial walls: biomechanical aspects, [In:] Collagen Structure and Mechanics, Peter Fratzl (Edit.), LLC, 285-324
  • 7. Holzapfel G.A., Gasser Th.C., Ogden R.W., 2004, Comparison of a multi-layer structural model for arterial walls with a Fung-type model for arterial aalls with a Fung-type model and issues of material stability, Journal of Biomechanical Engineering, 126, 2, 264-275
  • 8. Holzapfel G.A, Ogden R.W., 2003, Biomechanics of Soft Tissue in Cardiovascular Systems, Springer Wien New York
  • 9. Karimi A., Navidbakhsh M., Shojaei A., Faghihi S., 2013, Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries, Materials Science and Engineering, 33, 5, 2550-2554
  • 10. Kobielarz M., Jankowski L., 2013, Experimental characterization of the mechanical properties of the abdominal aortic aneurysm wall under uniaxial tension, Journal of Theoretical and Applied Mechanics, 51, 4, 949-958
  • 11. Kot M., Kobielarz M., Maksymowicz K., 2011, Assessment of mechanical properties of arterial calcium deposition, Transactions of FAMENA, 35, 3, 49-56
  • 12. Maksymowicz K., Kobielarz M., Czołgała J., 2011, Potential indicators of the degree of abdominal aortic aneurysm development in rupture risk estimation, Advances in Clinical and Experimental Medicine, 20, 2, 221-225
  • 13. Nikodem A., 2012, Correlations between structural and mechanical properties of human trabecular femur bone, Acta of Bioengineering and Biomechanics, 14, 2, 37-46
  • 14. Pezowicz C., 2010, Analysis of selected mechanical properties of intervertebral disc annulus fibrosus in macro and microscopic scale, Journal of Theoretical and Applied Mechanics, 48, 4, 917-932
  • 15. Schriefl A.J., Zeindlinger G., Pierce D.M., 2012, Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries, Journal of the Royal Society Interface, 9, 1275-1286
  • 16. Schulze-Bauer C., Regitinig P., Holzapfel G.A., 2001, Mechanics of the human femoral adventitia including high-pressure response, American Journal of Physiology, 282, 6, H2427-2440
  • 17. Shekhonin B.V., Domogatsky S.P., Muzykantov V.R., Idelson G.L., Rukosuev V.S., 1985, Distribution of type I, III, IV and V collagen in normal and atherosclerotic human arterial wall: Immunomorphological characteristics, Coll. Relat. Res., 5, 355-368
  • 18. Sommer G., Gasser T.C., Regitnig P., Auer M., Holzapfel G.A., 2008, Dissection properties of the human aortic media: an experimental study, Journal of Biomechanical Engineering, 130, 2, 1-12
  • 19. Sommer G., Regitnig P., Kltringer L., Holzapfel G.A., 2010, Biaxial mechanical properties of intact and layer-dissected human carotid arteries at physiological and supraphysiological loadings, Heart and Circulatory Physiology – American Journal of Physiology, 298, 3, H898-H912
  • 20. Stary H.C., 2000a, Natural history of calcium deposits in atherosclerosis progression and regression, Cardiology Journal, 89, (Suppl 2): II/28-II/35
  • 21. Stary H.C., 2000b, Natural history and histological classification of atherosclerotic lesions: an update, Arteriosclerosis, Thrombosis and Vascular Biology, 20, 1177-1178
  • 22. Stary H.C., 2004, Atlas of Atherosclerosis Progression and Regression, CD-ROM, 2nd Edition
  • 23. Szpakowski E., Kotliński K., Janaszek-Sitkowska H., 2006, Acute aortic dissection type A with concomitant myocardial infarction, Folia Cardiologica, 13, 1, 68-72
  • 24. Teng Z., Tang D., Zheng J., Woodard P.K., Hoffman A.H., 2009, An experimental study on the ultimate strength of the adventitia and media of human atherosclerotic carotid arteries in circumferential and axial direction, Journal of Biomechanics, 42, 15, 2535-2539
  • 25. Tong J., Sommer G., Regitnig P., Holzapfel G.A., 2011, Dissection properties and mechanical strength of tissue components in human carotid bifurcation, Annals of Biomedical Engineering, 39, 6, 1703-1719
  • 26. Vorp D.A., Raghavan M.L., Muluk S.C., Makaroun M.S., Steed D.L., Shapiro R., Webster M.W., 1996, Wall strength and stiffness of aneurysmal and nonaneurysmal aorta, Annals of the New York Academy of Science, 18, 800, 274-276
  • 27. Vorp D.A., Schiro B.J., Ehrlich M.P., Juvonen T.S., Ergin M.A., Griffith B.P., 2003, Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta, The Annals of Thoracic Surgery, 75, 4, 1210-1214
  • 28. Weisbecker H., Pierce D.M., Regiting P., Holzapfel G.A., 2012, Layer – specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening, Journal of the Mechanical Behavior of Biomedical Materials, 12, 93-106
  • 29. Żak M., 2014, Effect of support on mechanical properties of the intervertebral disc in long-term compression testing, Journal of Theoretical and Applied Mechanics, 52, 3, 677-686
  • 30. Żak M., Kuropka P., Kobielarz M., Dudek A., Kaleta-Kuratewicz K., Szotek S., 2011, Determination of the mechanical properties of the skin of pig foetuses with respect to its structure, Acta of Bioengineering and Biomechanics, 13, 2, 37-43
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfa28fa7-620a-4ab0-935f-dbf9b13d7e4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.