PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

First report on implementation of response surface methodology for the biodegradation of textile industrial effluents by Coniophora puteana IEBL-1

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current study was aimed to evaluate the industrial effluents biodegradation potential of an indigenous microorganism which reduced water pollution caused by these effluents. In the present study biodegradation of three textile industrial effluents was performed with locally isolated brown rot fungi named Coniophora puteana IEBL-1. Response Surface Methodology (RSM) was employed under Box Bhenken Design (BBD) for the optimization of physical and nutritional parameters for maximum biodegradation. Quality of treated effluents was checked by study of BOD, COD and analysis through HPLC. Three ligninolytic enzymes named lignin peroxidase, manganese peroxidase and laccase were also studied during the biodegradation process. The results showed that there was more than 85% biodegradation achieved for all three effluents with decrease in Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) below the recommended values for industrial effluent i.e. 80 mg/L for BOD and 220 mg/L for COD after optimization of nutritional parameters in the second stage. Analysis of samples through HPLC revealed the formation of less toxic diphenylamine, 3-methyldiphenylamine and N-methylaniline after treatment. The ligninolytic enzymes assays confirmed the role of lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase in biodegradation process. Lignin peroxidase with higher activity has more contribution in biodegradation of effluents under study. It can be concluded through the results that Coniophora buteana IEBL-1 is a potential fungus for the treatment of industrial effluents.
Rocznik
Strony
48--59
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur-10250 (AJK), Pakistan
  • University Institute of Biochemistry & Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Pakistan
  • Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
  • University Institute of Biochemistry & Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Pakistan
  • Department of Biochemistry & Biotechnology, University of Gujrat, Pakistan
  • Department of Biochemistry & Biotechnology, University of Gujrat, Pakistan
autor
  • Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur-10250 (AJK), Pakistan
autor
  • Center for Biotechnology and Microbiology, University of Swat, KPK, Pakistan
  • University Institute of Biochemistry & Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Pakistan
Bibliografia
  • 1. Ali, N., Hameed, A. & Ahmed, S. (2010). Role of brown rot fungi in the bioremoval of azo dyes under different conditions, Brazilian Journal of Microbiology, 41, pp. 907-915, DOI: 10.1590/S1517-83822010000400009.
  • 2. Ambrosio, S.T. & Campos, T.G.M. (2004). Decolorization of reactive azo dyes by Cunninghamella elegans UCP 542 under co-metabolic conditions, Bioresources Technology, 91, 1, pp. 69-75, DOI: 10.1016/S0960-8524(03)00153-6.
  • 3. Arora, S. (2014). Textile dyes: it’s impact on environment and its treatment, Journal of Bioremediation and Biodegradation, 5, 1, p. 1, DOI: 10.4172/2155-6199.1000e146.
  • 4. Asgher, M., Jamil, F. & Iqbal, H.M.N. (2012). Bioremediation potential of mixed white rot culture of Pleurotus ostreatus IBL-02 and Coriolus versicolor IBL-04 for textile industry wastewater, Bioremediation and Biodegradation, 6, pp. 233-241, DOI: 10.4172/2155-6199.S1-007.
  • 5. Asgher, M., Yasmeen, Q. & Iqbal, H.M.N. (2013). Enhanced decolorization of solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06, Saudi Journal of Biological Sciences, 20, 4, pp. 347-352, DOI: 10.1016/j. sjbs.2013.03.004.
  • 6. Awasthi, G. & Prakash, J. (2014). Biodegradation of textile waste by bacterial strains, Journal of Global Bioscience, 3, 1, pp. 379-384.
  • 7. Bawlec, A., Pawęska, K. & Jarząb, A. (2016). Changes in the microbial composition of municipal wastewater treated in biological processes, Journal of Ecological Engineering, 17, 3, pp. 41-46, DOI: 10.12911/22998993/63316.
  • 8. Çelik, L., Ozturk, A. & Abdullah, M. (2012). Biodegradation of reactive red 195 azo dye by the bacterium Rhodopseudomonas palustris 51ATA, African Journal of Microbiology Research, 6, 1, pp. 120-126, DOI: 10.5897/AJMR11.1059.
  • 9. Demirci, A., Mutlu, M.B., Guven, A., Korcan, E. & Guven, K. (2011). Decolorization of textile azo-metal complex dyes by a halophilic bacterium isolated from Camalti Saltern in Turkey, Clean-Soil, Air, Water, 39, 2, pp. 177-184, DOI: 10.5897/AJMR11.1059.
  • 10. Elkassas, H.Y. & Mohamed, L.A. (2014). Bioremediation of the textile waste effluent by Chlorella vulgaris, Egyptian Journal of Aquatic Research, 40, 3, pp. 301-308, DOI: 10.1016/j.ejar.2014.08.003.
  • 11. Gao, D., Du, L., Yang, J., Wu, W.M. & Liang, H. (2010). A critical review of the application of white rot fungus to environmental pollution control, Critical Reviews in Biotechnology, 30, pp. 70-77, DOI: 10.3109/07388550903427272.
  • 12. Greenberg, A.E., Trussell, R.R., Clesceri, L.S. & Franson, M.A.H. (1985). Standard methods for the examination of water and wastewater, 16th ed. American Public Health Association, Washington, DC, DOI: 10.2105/AJPH.56.3.387.
  • 13. Hassan, M.M., Alam, M.Z. & Anwar, M.N. (2013). Biodegradation of textile azo dyes by bacteria isolated from dyeing industry effluent, International Research Journal of Biological Sciences, 2, 8, pp. 27-31.
  • 14. Iqbal, H.M.N. & Asgher, M. (2013). Characterization and decolorization applicability of xerogel matrix immobilized manganese peroxidase produced from Trametes versicolor IBL-04, Protein & Peptide Letters, 20, 5, pp. 591-600.
  • 15. Kabra, A.N., Khandare, R.V. & Govindwar, S.P. (2013). Development of a bioreactor for remediation of textile effluent and dye mixture: a plant-bacterial synergistic strategy, Water Research, 47, 3, pp. 1035-1048, DOI: 10.1016/j.watres.2012.11.007.
  • 16. Kanmani, P., Kumar, R.S., Yuvaraj, N., Paari, K.A., Pattukumar, V. & Aru, V. (2011). Microbial decolorization of synthetic dyes and reactive dyes of industrial effluents by using a novel fungus Aspergillus proliferans, Water Environment Research, 83, 11, pp. 2099-2106, DOI: 10.2175/106143011X12928814444655.
  • 17. Kunjadia, P.D., Sanghvi, G.V., Kunjadia, A.P., Mukhopadhyay, P.N. & Dave, G.S. (2016). Role of ligninolytic enzymes of white rot fungi (Pleurotus spp.) grown with azo dyes, SpringerPlus, 5, 1, p. 1487, DOI: 10.1186/s40064-016-3156-7.
  • 18. Kumar, V.V., Kirupha, S.D., Periyaraman, P. & Sivanesan, S. (2011). Screening and induction of laccase activity in fungal species and its application in dye decolorization, Africian Journal ofMicrobiology Research, 5, pp. 1261-1267, DOI: 10.5897/AJMR10.894.
  • 19. Kyzioł-Komosinska, J., Rosik-Dulewska, Cz., Dzieniszewska, A. & Pajak, M. (2011). Compost as biosorbent for removal of acid dyes from the wastewater generated by the textile industry, Archives of Environmental Protection, 37, 4, pp. 3-14.
  • 20. Lade, H., Kadam, A., Paul, D. & Govindwar, S. (2016). Exploring the potential of fungal-bacterial consortium for low-cost biodegradation and detoxification of textile effluent, Archives of Environmental Protection, 42, 4, pp. 12-21, DOI: 10.1515/aep-2016-0042.
  • 21. Luczkiewicz, A., Jankowska, K., Bray, R., Kulbat, E., Quant, B., Sokolowska, A. & Olanczuk-Neyman, K. (2011). Antimicrobial resistance of fecal indicators in disinfected wastewater, Water Science & Technology, 64, 12, pp. 2352-2361, DOI: 10.2166/wst.2011.769.
  • 22. Mahmood, R.T., Asad, M.J., Asgher, M., Gulfraz, M. & Mukhtar, T. (2017). Analysis of lingolytic enzymes and decolorization of disperse violet S3RL, yellow brown S2RFL, red W4BS, yellow SRLP and red S3B by brown rot fungi, Pakistan Journal of Agriculture Sciences, 54, 2, pp. 407-413.
  • 23. Mahmood, R.T., Asad, M.J., Asgher, M., Gulfraz, M., Mukhtar, T. & Akram, M. (2015). Study of disperse dyes biodegradation and lignolytic enzymes production potential of indigenous Coniophora puteana IBL-01, a brown rot fungi, Advances in Environmental Biology, 9, 11, pp. 139-150.
  • 24. Moosvi, S., Kehaira, H. & Madamwar, D. (2005). Decolorization of textile dye reactive violet 5 by a newly isolated bacterial consortium RVM 11.1, World Journal ofMicrobiology and Biotechnology, 21, pp. 667-672, DOI: 10.1007/s11274-004-3612-3.
  • 25. Mtui, G. & Nakamura, Y. (2008). Characterization of lignocellulosic enzymes from white-rot fungus Phlebia crysocreas isolated from a marine habitat, Journal of Engineering and Applied Sciences, 2, pp. 1501-1508, DOI: 10.1007/s00284-014-0743-0.
  • 26. Pavko, A. (2011). Fungal decolonization and degradation of synthetic dyes some chemical engineering aspects, Waste Water-Treatment and Reutilization, pp. 65-88, DOI: 10.5772/16120.
  • 27. Piontek, K., Smith, A.T. & Blodig, W. (2001). Lignin peroxidase structure and function, Biochemical Society Transactions, 29, pp. 111-116.
  • 28. Porwal, H.J., Mane, A.V. & Velhal, S.G. (2015). Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge, Water Resources and Industry, 9, pp. 1-15, DOI: 10.1016/j.wri.2014.11.002.
  • 29. Sadhasivam, S., Savitha, S., Swaminathan, K. & Lin, F.H. (2008). Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1, Process Biochemistry, 43, pp. 736-742, DOI: 10.1016/j.procbio.2008.02.017.
  • 30. Saleh, S.M.A.A. (2005). HPLC determination of four textile dyes and studying their degradation using spectrophotometric technique. M.Sc. Thesis, Faculty of Graduate Studies, Al-Najah National University, Palestine, p. 33.
  • 31. Samuthi, S. & Manju, B.S. (2000). Uptake of reactive textile dyes by Aspergillus foetidus, Enzyme Microbial Technology, 27, 6, pp. 347-355, DOI: 10.1016/S0141-0229(00)00234-9.
  • 32. Sanchez, C. (2009). Lignocellulosic residues: biodegradation and bioconversion by fungi, Biotechnology Advances, 27, pp. 185-194, DOI: 10.1016/j.biotechadv.2008.11.001.
  • 33. Selvakumar, S., Manivasagan, R. & Chinnappan, K. (2013). Biodegradation and decolourization of textile dye wastewater using Ganoderma lucidum, Biotechnology, 3, 1, pp. 71-79, DOI: 10.1007/s13205-012-0073-5.
  • 34. Shakir, K., Elkafrawy, A.F., Ghoneimy, H.F., Behir, S.G.E. & Refaat, M. (2010). Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation, Water Research, 44, pp. 1449-1461, DOI: 10.1016/j.watres.2009.10.029.
  • 35. Sing, N.N., Husaini, A., Zulkharnain, A. & Roslan, H.A. (2017). Decolourisation capabilities of ligninolytic enzymes produced by Marasmius cladophyllus UMAS MS8 on Remazol Brilliant Blue R and other azo dyes, Biomedical Research International, ID 1325754, pp. 1-8, DOI: 10.1155/2017/1325754.
  • 36. Singh, A.L., Chaudhary, S., Kayastha, A.M. & Yadav, A. (2015). Decolorization and degradation of textile effluent with the help of Enterobacter asburicae, Indian Journal of Biotechnology, 14, pp. 101-106.
  • 37. Singh, H. (2006). Mycoremediation: Fungal Bioremediation. Wiley Interscience, pp. 421-471.
  • 38. Tien, M. & Kirk, T.K. (1988). Lignin peroxidases of Phanerochaete chrysosporium, Methods in Enzymology, 161, pp. 238-249, DOI: 10.1016/0076-6879(88)61025-1.
  • 39. Vijayalakshmidevi, S.R. & Muthukumar, K. (2015). Improved biodegradation of textile dye effluent by coculture, Ecotoxicology and Environmental Safety, 114, pp. 23-30, DOI: 10.1016/j. ecoenv.2014.09.039.
  • 40. Wang, W., Li, S., Zhao, X., Lin, B. & Du, Y (2007). Determination of six secondary metabolites including chlorogenic acid in tobacco using high performance liquid chromatography with coulometric array detection, Chinese Journal of Chromatography, 25, 6, pp. 848-852.
  • 41. Wariishi, H., Vallim, K. & Gold, M.H. (1992). Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium kinetic mechanism and role of chelators, The Journal of Biological Chemistry, 267, 33, pp. 23688-23695, DOI: 10.1021/bi00414a061.
  • 42. Wolfenden, B.S. & Willson, R.L. (1982). Radical-cations as reference chromogen in kinetic studies of one-electron transfer reactions: pulse radiolysis studies of 2,2'-azinobis-(3-ethylbenzthiazoline- -6-sulphonate), Journal of Chemical Society Perkin Transactions, 2, pp. 805-812, DOI: 10.1039/P29820000805.
  • 43. Zhang, X., Liu, Y., Yan, K. & Wu, H. (2007). Decolorization of anthraquinone-type dye by bilirubin oxidase-producing nonligninolytic fungus Myrothecium sp. IMER1, Journal of Bioscience and Bioengineering, 104, 2, pp. 104-110, DOI: 10.1263/jbb.104.104.
  • 44. Zhao, X. & Hardin, I.R. (2007). HPLC and spectrophotometric analysis of biodegradation of azo dyes by Pleurotus ostreatus, Dyes and Pigments, 73, pp. 322-325, DOI: 10.1016/j.dyepig.2005.11.014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df9b2d4c-d366-487b-b311-c3b0a7fd334e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.