PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simplified numerical model of magnetocaloric cooling device

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper the laboratory scale test stand of a magnetic cooling device is briefly introduced. One set of measurements, for a given geometry of a magnetic bed filled with gadolinium, are presented and used as reference results for developing a zero-dimensional (0D) mathematical model. The 0D model assumes adiabatic heat transfer in the magnetic bed and thermal interaction of the system with surrounding ambient air. Moreover, it takes into consideration the basic dimensions of the bed geometry. Its results give a theoretical upper limit of a temperature span of the proposed magnetic cooling device. The ultimate goal of the proposed 0D numerical model is to gain insight into the basic physics needed to build a full CFD model and optimize system efficiency so as to approach the theoretical temperature limits.
Rocznik
Strony
58--66
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Wroclaw University of Science and Technology Wyb. Wyspianskiego 27, 50 -370 Wroclaw, Poland
  • Wroclaw University of Science and Technology Wyb. Wyspianskiego 27, 50 -370 Wroclaw, Poland
  • Wroclaw University of Science and Technology Wyb. Wyspianskiego 27, 50 -370 Wroclaw, Poland
Bibliografia
  • [1] M. Isaac, D. van Vuuren, Modeling global residential sector energy demand for heating and air conditioning in the context of climate change, Energy Policy 37 (2) (2009) 507–521.
  • [2] R. Teverson, T. Peters, M. Freer, J. Radcliffe, L. Koh, et al., Doing cold smarter, Tech. rep. (2015).
  • [3] K. Sandeman, Magnetocaloric materials: the search for new systems, Scripta Materialia 67 (6) (2012) 566–571.
  • [4] A. Smith, C. Bahl, R. Bjørk, K. Engelbrecht, K. Nielsen, P. N., Materials challenges for high performance magnetocaloric refrigeration devices, Advanced Energy Materials 11 (2) (2012) 1288–1318.
  • [5] S. Fähler, Caloric effects in ferroic materials: New concepts for cooling, Energy Technology 6 (8) (2018) 1394–1396.
  • [6] N. de Oliveira, P. von Ranke, Theoretical aspects of the magnetocaloric effect, Physics Reports 489 (4) (2010) 89–159.
  • [7] F. Casanova i Fernàndez, Magnetocaloric effect in Gd5(SixGe1-x)4 alloys, Ph.D. thesis, Universitat de Barcelona (2014). URL http://hdl.handle.net/10803/1789
  • [8] V. Pecharsky, K. Gschneider Jr, Advanced magnetocaloric materials: what does the future hold?, International Journal of Refrigeration 29 (8) (2009) 1239–1249.
  • [9] V. Franco, J. Blázquez, J. Ipus, J. Law, L. Moreno-Ramírez, A. Conde, Magnetocaloric effect: From materials research to refrigeration devices, Progress in Materials Science 93 (2018) 112–232.
  • [10] A. Tishin, Y. Spichkin, The magnetocaloric effect and its applications, Materials Today 6 (11) (2003) 51.
  • [11] V. Pecharsky, K. Gschneider Jr, Magnetocaloric effect and magnetic refrigeration, Journal of Magnetism and Magnetic Materials 200 (1-3) (1999) 44–56.
  • [12] G. Brown, Magnetic heat pumping near room temperature, Journal of Applied Physics 47 (8) (1976) 3673–3680.
  • [13] R. Bjørk, C. Bahl, A. Smith, D. Christensen, P. N., An optimized magnet for magnetic refrigeration, Journal of Magnetism and Magnetic Materials 322 (21) (2010) 3324–3328.
  • [14] R. Bjørk, C. Bahl, A. Smith, P. N., Review and comparison of magnet designs for magnetic refrigeration, International Journal of Refrigeration 33 (3) (2010) 437–448.
  • [15] K. Engelbrecht, K. Nielsen, P. N., An experimental study of passive regenerator geometries, International Journal of Refrigeration 34 (8) (2011) 1817–1822.
  • [16] B. Yu, M. Liu, P. Egolf, A. Kitanovski, A review of magnetic refrigerator and heat pump prototypes built before the year 2010, International Journal of Refrigeration 13 (6) (2010) 1029–1066.
  • [17] S. Benford, G. Brown, Magnetic heat pumping near room temperature, Journal of Applied Physics 52 (3) (1982) 2110.
  • [18] B. Ponomarev, Magnetic properties of gadolinium in the region of paraprocess, Journal of Magnetism and Magnetic Materials 61 (1-2) (1986) 129–138.
  • [19] V. Pecharsky, K. Gschneider Jr, Magnetocaloric effect from indirect measurements: Magnetization and heat capacity, Journal of Applied Physics 86 (1) (1999) 568.
  • [20] Y. S. Koshkid’ko, J. Ćwik, T. Ivanova, S. Nikitin, M. Miller, K. Rogacki, Magnetocaloric properties of gd in fields up to 14 t, Journal of Magnetism and Magnetic Materials 433 (2017) 234–238.
  • [21] T. Okamura, Improvement of 100 w class room temperature magnetic refrigerator, Proceedings 2nd International Conference on Magnetic Refrigeration at Room Temperature, 2007 (2007) 377–382.
  • [22] K. Engelbrecht, D. Eriksen, C. Bahl, R. Bjørk, J. Geyti, J. Lozano, K. Nielsen, S. F., A. Smith, P. N., Experimental results for a novel rotary active magnetic regenarator, International Journal of Refrigeration 35 (6) (2012) 1498–1505.
  • [23] D. Arnold, A. Tura, A. Ruebsaat-Trott, A. Rowe, Design improvements of a permanent magnet active magnetic refrigerator, International Journal of Refrigeration 37 (2014) 99–105.
  • [24] S. Jacobs, J. Auringer, A. Boeder, J. Chell, L. Komorowski, J. Leonard, S. Russek, C. Zimm, The performance of a large-scale rotary magnetic refrigerator, International journal of refrigeration 37 (2014) 84–91.
  • [25] T. Lei, K. Engelbrecht, K. Nielsen, C. Veje, Study of geometries of active magnetic regenerators for room temperature magnetocaloric refrigeration, Applied Thermal Engineering 111 (2017) 1232–1243.
  • [26] A. Czernuszewicz, J. Kaleta, D. Kołosowski, D. Lewandowski, Experimental study of the effect of regenerator bed length on the performance of a magnetic cooling system, International Journal of Refrigeration 97 (2019) 49–55.
  • [27] S. Churchill, H. Chu, Correlating equations for laminar and turbulent free convection from vertical plates, International Journal of Heat and Mass Transfer 18 (11) (1975) 1323–1329.
  • [28] S. Churchill, Laminar free convection from a horizontal cylinder with a uniform heat flux density, Letters in Heat and Mass Transfer 2 (1)(1974) 109–111.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df974000-4022-470c-8745-3a92a5cfe88d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.