PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Biochar Addition on Vermicomposting of Food Industry Sewage Sludge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sewage sludge (SS) is a byproduct of wastewater treatment which is commonly used as fertilizer in the world. However, due to the possible contamination with heavy metals, xenobiotics and fecal pathogens, its application on fields is not so common in Poland. A safer alternative for agricultural use is the SS produced by food industry in small „inhouse” wastewater treatment plants, as substances that are used in its production are usually less harmful. As pretreatment of industrial wastewater is required before dumping the wastewater into common stream, the SS is an abundant byproduct that needs to be managed in an environmentally friendly and cost effective manner. Because the water content in SS is usually high, the dosage and logistics are problematic and thus we propose converting the sewage sludge into solid granular fertilizer in the vermicomposting process. Not only are the weight and volume of product decreased as a result, but also the nutrients such as N, P, and K become concentrated and made more accessible for plants. The SS is also further stabilized and less prone to produce odors and becoming putrid. The aim of this study was the in-depth analysis of the SS process vermicomposting with biochar. The SS was acquired from a local soft drink factory wastewater treatment plant. The batches of SS were inoculated with 20% mature vermicompost and E. fetida worms. Instead of typical bulking agents (like woodchips or straw) powdered biochar was used in the concentrations of 5, 10 and 15% as it exhibits beneficial influence on the process and increase the value of the final product.
Słowa kluczowe
Rocznik
Strony
36--45
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Częstochowa University of Technology, Faculty of Infrastructure and Environment, Poland
  • Universita Tomáše Bati in Zlín, Fakulta Technologická, Institute of Environmental Protection Engineering, Czech Republic
  • Częstochowa University of Technology, Faculty of Infrastructure and Environment, Poland
  • Częstochowa University of Technology, Faculty of Infrastructure and Environment, Poland
Bibliografia
  • 1. Day, A.D., and Ludeke, K.L. 1993. Plant Nutrients in Sewage Sludge. In Plant Nutrients in Desert Environments, J. L. Cloudsley-Thompson, A. D. Day and K. L. Ludeke, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 75–82.
  • 2. Dias, B.O., Silva, C.A., Higashikawa, F.S., Roig, A., and Sánchez-Monedero, M.A. 2010. Use of biochar as bulking agent for the composting of poultry manure. Effect on organic matter degradation and humification. Bioresource technology 101, 4, 1239–1246.
  • 3. Doan, T.T., Bouvier, C., Bettarel, Y., Bouvier, T., Henry-des-Tureaux, T., Janeau, J.L., Lamballe, P., van Nguyen, B., and Jouquet, P. 2014. Influence of buffalo manure, compost, vermicompost and biochar amendments on bacterial and viral communities in soil and adjacent aquatic systems. Applied Soil Ecology 73, 78–86.
  • 4. Doan, T.T., Henry-des-Tureaux, T., Rumpel, C., Janeau, J.-L., and Jouquet, P. 2015. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam. A three year mesocosm experiment. The Science of the total environment 514, 147–154.
  • 5. Hernandez-Soriano, M.C., Kerré, B., Kopittke, P.M., Horemans, B., and Smolders, E. 2016. Biochar affects carbon composition and stability in soil. A combined spectroscopy-microscopy study. Scientific Reports 6, 25127 EP -.
  • 6. Hua, L., Wu, W., Liu, Y., McBride, M.B., and Chen, Y. 2009. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environmental science and pollution research international 16, 1, 1–9.
  • 7. Kijo-Kleczkowska, A., Otwinowski, H., and Środa, K. 2012. Properties and production of sewage sludge in Poland with reference to the methods of neutralizing. Archives of Journal of Waste Management and Environmental Protection 2012, 4, 59–78.
  • 8. Leila, S., Mhamed, M., Hermann, H., Mykola, K., Oliver, W., Christin, M., Elena, O., and Nadia, B. 2017. Fertilization value of municipal sewage sludge for Eucalyptus camaldulensis plants. Biotechnology reports (Amsterdam, Netherlands) 13, 8–12.
  • 9. Ludibeth, S.-M., Marina, I.-E., and Vicenta, E.M. 2012. Vermicomposting of Sewage Sludge. Earthworm Population and Agronomic Advantages. Compost Science & Utilization 20, 1, 11–17.
  • 10. Malińska, K., Zabochnicka-Świątek, M., Cáceres, R., and Marfà, O. 2016. The effect of precomposted sewage sludge mixture amended with biochar on the growth and reproduction of Eisenia fetida during laboratory vermicomposting. Ecological Engineering 90, 35–41.
  • 11. Matovic, D. 2011. Biochar as a viable carbon sequestration option. Global and Canadian perspective. Energy 36, 4, 2011–2016.
  • 12. McHenry, M.P. 2009. Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia. Certainty, uncertainty and risk. Agriculture, Ecosystems & Environment 129, 1–3, 1–7.
  • 13. Medyńska-Juraszek, A. 2016. Biochar as a soil amendment. Soil Science Annual 67, 3, 626.
  • 14. Meller Harel, Y., Kolton, M., Elad, Y., Rav-David, D., Cytryn, E., Borenshtein, M., Shulchani, R., and Graber, E. 2012. Biochar impact on plant development and disease resistance in pot trials. IOBC WPRS Bull. 2012, 78, 141–147.
  • 15. Mininni, G., and Santori, M. 1987. Problems and perspectives of sludge utilization in agriculture. Agriculture, Ecosystems & Environment 18, 4, 291–311.
  • 16. Mu, J., Li, X., Jiao, J., Ji, G., Wu, J., Hu, F., and Li, H. 2017. Biocontrol potential of vermicompost through antifungal volatiles produced by indigenous bacteria. Biological Control 112, 49–54.
  • 17. Munroe, G. 2007. Manual of on-farm vermicomposting and vermiculture. Organic Agriculture Centre of Canada 39, 40.
  • 18. Raheem, A., Sikarwar, V.S., He, J., Dastyar, W., Dionysiou, D.D., Wang, W., and Zhao, M. 2018. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge. A review. Chemical Engineering Journal 337, 616–641.
  • 19. Schmidt, H.-P., and Wilson, K. 2012. 55 uses of biochar. Ithaka J 1, 286–289.
  • 20. Suthar, S. 2009. Vermicomposting of vegetable-market solid waste using Eisenia fetida. Impact of bulking material on earthworm growth and decomposition rate. Ecological Engineering 35, 5, 914–920.
  • 21. Vigueros, L.C., and Ramírez Camperos, E. 2002. Vermicomposting of sewage sludge. A new technology for Mexico. Water science and technology : a journal of the International Association on Water Pollution Research 46, 10, 153–158.
  • 22. Wang, Y., Xu, Y., Li, D., Tang, B., Man, S., Jia, Y., and Xu, H. 2018. Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress. The Science of the total environment 621, 1057–1065.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df9516dd-1e71-4750-945d-aa7e91496b24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.