PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation and characteristics of multiwalled carbon nanotube aqua nanofluids from a flat plate heater surface in a pool

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this experimental investigation, the critical heat flux (CHF) of aqua-based multiwalled carbon nanotube (MWCNT) nanofluids at three different volumetric concentrations 0.2%, 0.6%, and 0.8% were prepared, and the test results were compared with deionized water. Different characterization techniques, including X-ray diffraction, scanning electron microscopy and Fourier transform infrared, were used to estimate the size, surface morphology, agglomeration size and chemical nature of MWCNT. The thermal conductivity and viscosity of the MWCNT at three different volumetric concentrations was measured at a different temperature, and results were compared with deionized water. Although, MWCNT-deionized water nanofluid showed superior performance in heat transfer coefficient as compared to the base fluid. However, the results proved that the critical heat flux is increased with an increase in concentrations of nanofluids.
Rocznik
Strony
547--554
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical Engineering, K S Rangasamy College of Technology, Tiruchengode 637 215, India
  • Department of Mechanical Engineering, Sona College of Technology, Salem 636 011, India
autor
  • Department of Mechanical Engineering, K S Rangasamy College of Technology, Tiruchengode 637 215, India
  • Department of Mechatronics Engineering, K S Rangasamy College of Technology, Tiruchengode 637 215, India
Bibliografia
  • [1] S. Nukiyama, “Maximum and Minimum values of heat transmitted from metal to boiling water under atmospheric pressure”, Soc. Mech. Engng. 37, p. 206, (1934).
  • [2] S. Nukiyama, “The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure”, Int. J. Heat Mass Transf. 9(12), 1419–1433, (1966).
  • [3] H. Babar, M. U. Sajid, and H. M. Ali, “Performance improvement of the heat recovery unit with sequential type heat pipes using Tio2 nanofluid”, Thermal science, pp. 303‒303 (2017).
  • [4] A. M. Siddiqui, “Evaluation of Nanofluids Performance for Simulated Microprocessor”, Therm. Sci. 21(5), 2227‒2236 (2017).
  • [5] E.Firouzfar, “Energy saving in HVAC systems using nanofluid”, Appl. Therm. Eng. 31(8), 1543‒1545 (2011).
  • [6] J.Buongiorno, “Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues, and research gaps”, Nucl. Technol. 162(1), 80‒91 (2008).
  • [7] I.C. Bang and J.H. Kim, “Thermal-fluid characterizations of ZnO and SiC nanofluids for advanced nuclear power plants”, Nucl. Technol. 70(1), 16‒27, (2010).
  • [8] H.M. Ali, “Heat transfer enhancement of car radiator using aqua based magnesium oxide nanofluids”, Therm. Sci. 19(6), 2039‒2048 (2015).
  • [9] M. Rahman, “Effect of solid volume fraction and tilt angle in a quarter circular solar thermal collectors filled with CNT–water nanofluid”, Int. Commun. Heat Mass Transf. 57, 79‒90 (2014).
  • [10] S.J. Kim, I.C. Bang, J. Buongiorno, and L.W. Hu, “Study of pool boiling and critical heat flux enhancement in nanofluids”, Bull. Pol. Ac.: Tech. 55(2), 211‒216, (2007).
  • [11] J.T. Cieśliński, and T.Z. Kaczmarczyk “Pool boiling of nanofluids on rough and porous coated tubes: experimental and correlation”, Bull. Pol. Ac.: Tech. 35(2), 3–20 (2014)
  • [12] H. Zhao and A. Williams, “Predicting the critical heat flux in pool boiling based on hydrodynamic instability induced irreversible hot spots”, Int. J. Multiph. Flow 104, 174–187 (2018).
  • [13] J. Wang, M. Diao, and X. Liu, “Numerical simulation of pool boiling with special heated surfaces”, Int. J. Heat Mass Transf. 130, 460–468 (2019).
  • [14] A. Khan and H. Muhammad Ali, “A Comprehensive review on pool boiling heat transfer using nanofluids”, Therm. Sci. OnLine-First Issue 00, 72‒72 (2019).
  • [15] H. Babar, M. Usman Sajid, and H. Muhammad Ali, “Viscosity of hybrid nanofluids: A critical review”, Therm. Sci. OnLine-First Issue 00, 15‒15 (2019).
  • [16] V. Fuskele and R.M. Sarviya, “Recent developments in Nanoparticles Synthesis, Preparation and Stability of Nanofluids”, Mater. Today Proc. 4(2), 4049–4060 (2017).
  • [17] A.R. Yagnem and V. S., “Heat transfer enhancement studies in pool boiling using hybrid nanofluids”, Thermochim. Acta 672, 93–100 (2019).
  • [18] M. Xing, J. Yu, and R. Wang, “Effects of surface modification on the pool boiling heat transfer of MWNTs/water nanofluids”, Int. J. Heat Mass Transf. 103, 914–919 (2016).
  • [19] Y. Hu, Z. Liu, and Y. He, “Effects of SiO2 nanoparticles on pool boiling heat transfer characteristics of water based nanofluids in a cylindrical vessel”, Powder Technol. 327, 79–88 (2018).
  • [20] S. Mori, F. Yokomatsu, and Y. Utaka, “Enhancement of critical heat flux using spherical porous bodies in saturated pool boiling of nanofluid”, Appl. Therm. Eng. 144, 219–230, (2018).
  • [21] S.D. Park et al., “Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux”, Appl. Phys. Lett. 97(2), 023103 (2010).
  • [22] S.J. Kim, I.C. Bang, J. Buongiorno, and L.W. Hu, “Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids”, Appl. Phys. Lett. 89(15), 153107 (2006).
  • [23] L.L. Manetti, M.T. Stephen, P.A. Beck, and E.M. Cardoso, “Evaluation of the heat transfer enhancement during pool boiling using low concentrations of Al2O3-water based nanofluid”, Exp. Therm. Fluid Sci. 87, 191–200, (2017).
  • [24] R. Kamatchi and S. Venkatachalapathy, “Parametric study of pool boiling heat transfer with nanofluids for the enhancement of critical heat flux: a review”, Int. J. Therm. Sci. 87, 228‒240 (2015)
  • [25] H. Kitamura, M. Sekido, H. Takeuchi, and M. Ohno, “The method for surface functionalization of single-walled carbon nanotubes with fuming nitric acid”, Carbon 49, 3851‒3856, (2011).
  • [26] Y. and Li, “Heat transfer enhancement of nano fluids”, Int. J. Heat Fluid Flow 21, 58–64 (2000).
  • [27] H.C. Brinkman, “The viscosity of concentrated suspensions and solutions”, J.Chem. Phys. 20, 571–581(1952).
  • [28] K. Cornwell, S, and D. Houston, “Nucleate pool boiling on horizontal tubes: a convection-based correlation”, Int. J. Heat Mass Transfer 37 (Suppl. 1), 303–309 (1994).
  • [29] H. Kim, J. Kim, and M. Kim, “Experimental study on CHF characteristics of water–TiO2 nano fluids”, Nucl. Eng. Technol. 38(1), 61–69 (2006).
  • [30] Y.H. Jeong, W.J. Chang, and S.H. Chang, “Wettability of heated surfaces under pool boiling using surfactant solutions and nano-fluids”, Int. J. Heat. Mass Transf. 51, 3025‒3031 (2008).
  • [31] R. Kamatchi, “Experimental investigations on nucleate boiling heat transfer of aqua based reduced graphene oxide nanofluids”, Int. J. Heat. Mass Transf. 54(2), 437‒451 (2018). DOI 10.1007/s00231‒017‒2135-z (2017)
  • [32] G. Harish, V. Emlin, and V. Sajith, “Effect of surface particle interactions during pool boiling of nanofluids”, Int. J. Therm. Sci. 50, 2318–2327 (2011).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df92039d-925b-4d97-84c0-722dd200caf1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.