PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Novel antioxidant materials based on polysaccharides containing resveratrol and syringic acid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polysaccharides offer exceptional advantages for biomedical applications due to their natural biocompatibility, biodegradability, and lack of immune response. By incorporating active ingredients, researchers can tailor these materials’ properties for specific uses. This study focused on developing enhanced biodegradable films using chitosan and konjac glucomannan as base materials, enriched with two natural antioxidants: resveratrol and syringic acid. Films containing these antioxidants at two different concentrations (10% and 20% were obtained and thoroughly characterized using multiple analytical techniques. Infrared spectroscopy confirmed the successful incorporation of the active compounds, while scanning electron microscopy and atomic force microscopy revealed homogeneous surfaces with slightly increased roughness due to the additives. The antioxidant-enriched films demonstrated significant improvements in several properties. Most importantly, they showed strong antioxidant activity, with resveratrol and syringic acid working synergistically to enhance radical scavenging capabilities. The 20% concentration films exhibited markedly improved wettability, while mechanical properties were enhanced compared to the pure polymer blend. Although moisture vapor transmission decreased with the additives, this actually represents a beneficial barrier property for many applications. The films’ swelling behavior proved particularly interesting, showing high swelling capacity at physiological pH (7.4) but significantly lower swelling at acidic pH (5.5). This pH-responsive behavior, combined with enhanced antioxidant properties, makes these materials especially promising for medical applications such as wound dressings. The obtained antioxidant-enhanced biopolymer films hold considerable potential in multiple industries, including medical devices, cosmetics, food products, and packaging applications. With further biological testing, these materials could advance wound care treatments by providing protective barrier functions and therapeutic antioxidant benefits.
Rocznik
Strony
art. no. 6
Opis fizyczny
Bibliogr. 57 poz., tab., wykr., zdj.
Twórcy
  • Laboratory for Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
  • Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
  • Laboratory for Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
Bibliografia
  • [1] Nešić A., Cabrera-Barjas G., Dimitrijević-Branković S., Davidović S., Radovanović N., Delattre C.: Prospects of Polysaccharide-Based Materials as Advanced Food Packaging. Molecules 25 (2020) 135.
  • [2] Jabeen N., Atif M.: Polysaccharides based biopolymers for biomedical applications: A review. Polymers Advanced Technologies 23 (2024) e6203.
  • [3] Yu Y., Shen M., Song Q., Xie J.: Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate Polymers 183 (2018) 91-101.
  • [4] Gim S., Zhu Y., Seeberger P.H., Delbianco M.: Carbohydrate-based nanomaterials for biomedical applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 11 (2019) e1558.
  • [5] K R., S V.K., Saravanan P., Rajeshkannan R., Rajasimman M., Kamyab H., Vasseghian Y.: Exploring the diverse applications of Carbohydrate macromolecules in food, pharmaceutical, and environmental technologies. Environmental Research 240 (2024) 117521.
  • [6] Pellis A., Guebits G.M., Myanhongo G.S.: Chitosan: Sources, Processing and Modification Techniques. Gels 8 (2022) 393.
  • [7] Kedir W.M., Abdi G.F., Goro M.M., Tolesa L.D.: Pharmaceutical and drug delivery applications of chitosan biopolymer and its modified nanocomposite: A review. Heliyon 8 (2022) e10196.
  • [8] Zhou C-E., Kan C., Sun C., Du J., Xu C.: A Review of Chitosan Textile Applications. AATCC Journal of Research 6 (2019) 8-14.
  • [9] Tang W., Wang J., Hou H., Li Y., Wang J., Fu J., et al.: Review: Application of chitosan and its derivatives in medical materials. International Journal of Biological Macromolecules 240 (2023) 124398.
  • [10] Aranaz I., Alcantara A.R., Civera M.C., Arias C., Elorza B., Heras Caballero A., Acosta N.: Chitosan: An Overview of Its Properties and Applications. Polymers 13 (2021) 3256.
  • [11] Ways T.M.M., Lau W.M., Khutoryanskiy V.V.: Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems. Polymers 10 (2018) 267.
  • [12] Pogorielov M.V., Sikora V.Z.: Chitosan as a Hemostatic Agent: Current State. European Journal of Medicine Series B (2015) 24–33.
  • [13] Ferreira P.G., Ferreira V.F., da Silva F.d.C., Freitas C.S., et al.: Chitosans and Nanochitosans: Recent Advances in Skin Protection, Regeneration, and Repair. Pharmaceutics 14 (2022) 1307.
  • [14] El-hefian E.A., Nasef M.M., Yahaya A.H.: Chitosan Physical Forms: A Short Review. Australian Journal of Basic and Applied Sciences 5 (2011) 670-677.
  • [15] Sun Y., Xu X., Zhang Q., Zhang D., Xie X., Zhou H., Wu Z., et al.: Review of Konjac Glucomannan Structure, Properties, Gelation Mechanism, and Application in Medical Biology. Polymers 15 (2023) 1852.
  • [16] Zhou N., Zheng S., Xie, W., Cao G., Wang L., Pang J.: Konjac glucomannan: A review of structure, physicochemical properties, and wound dressing applications. Journal of Applied Polymer Science 139 (2022) e51780.
  • [17] Zhao C., She X., Liu E., Harijati N., Cheng T., Hu Z., Jin S., Diao Y.: Screening of the Candidate of DNA Barcodes for Three Important Amorphophallus Species Identification. Agronomy 10 (2020) 1366.
  • [18] Song L., Xie W., Zhao Y., Lv X., Yang H., Zeng Q., Zheng Z., Yang X.: Synthesis, Antimicrobial, moisture Absorption and Retention Activities of Kojic Acid-Grafted Konjac Glucomannan Oligosaccharides. Polymers 11 (2019) 11, 1979.
  • [19] Zhou, Y.; Jiang, R.; Perkins, W.S.; Cheng, Y. Morphology evaluation and gelation mechanism of alkali induced konjac glucomannan hydrogel. Food Chemistry 269 (2019) 80–88.
  • [20] Behera S.S., Ray R.C.: Nutritional and potential health benefits of konjac glucomannan, a promising polysaccharide of elephant foot yam, Amorphophallus konjac K. Koch: A review. Food Reviews International 33 (2017) 22-43.
  • [21] Devaraj R.D., Reddy C.K., Xu, B.: Health-promoting effects of konjac glucomannan and its practical applications: A critical review. International Journal of Biological Macromolecules 126 (2019) 273-281.
  • [22] Zhang Y.-Q., Xie B.-J., Gan X.: Advance in the applications of konjac glucomannan and its derivatives. Carbohydrate Polymers 60 (2005) 27–31.
  • [23] Jiang Y., Huang J., Wu X., Ren Y., Li Z., Ren J.: Controlled release of silver ions from AgNPs using a hydrogel based on konjac glucomannan and chitosan for infected wounds. International Journal of Biological Macromolecules 149 (2020) 148–157.
  • [24] Choi K.H., Kim S.T., Bin B.H., Park P.J.: Effect of Konjac Glucomannan (KGM) on the Reconstitution of the Dermal Environment against UVB-Induced Condition. Nutrients 12 (2020) 2779.
  • [25] Yang B., Chen Y., Li Z., Tang Z., Tang Y., Zhang Y., Nie X., Fang C., Li X., Zhang H.: Konjac glucomannan/polyvinyl alcohol nanofibers with enhanced skin healing properties by improving fibrinogen adsorption. Materials Science & Engineering C 110 (2020) 110718.
  • [26] Onishi N., Kawamoto S., Suzuki H., Santo H., Aki T., Shigeta S., Hashimoto K., Hide M., Ono K.: Dietary Pulverized Konjac Glucomannan Suppresses Scratching Behavior and Skin Inflammatory Immune Responses in NC/Nga Mice. International Archives of Allergy and Immunology 144 (2007) 95-104.
  • [27] Aderibigbe B.A.: Hybrid-Based Wound Dressings: Combination of Synthetic and Biopolymers. Polymers 14 (2022) 3806.
  • [28] Wahba M.I.: Enhancement of the mechanical properties of chitosan. Journal of Biomaterials Science, Polymer Edition 31 (2020) 350-275.
  • [29] Zhang S., Li J., Li J., Du N., Li D., Li F., Man J.: Application status and technical analysis of chitosan-based medical dressings: A review. RSC Advances 10 (2020) 34308.
  • [30] Zhu F.: Modifications of konjac glucomannan for diverse applications. Food Chemistry 256 (2018) 419-426.
  • [31] Grabska-Zielińska S., Sionkowska A.: How to Improve Physico-Chemical Properties of Silk Fibroin Materials for Biomedical Applications?—Blending and Cross-linking of Silk Fibroin—A Review. Materials 14 (2021) 1510.
  • [32] Ye X., Kennedy J.F., Li B., Xie B.J.: Condensed state structure and biocompatibility of the konjac glucomannan blend films. Carbohydrate Polymers 64 (2006) 532–538.
  • [33] Kulka-Kamińska K., Sionkowska A.: The Properties of Thin Films Based on Chitosan/Konjac Glucomannan Blends. Polymers 16 (2024) 3072.
  • [34] Meng T., Xiao D., Muhammed A., Deng J., Chen L., He J.: Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 26 (2021) 229.
  • [35] Galiniak S., Aebisher D., Bartusik-Aebisher, D.: Health benefits of resveratrol administration. Acta Biochimica Polonica 66 (2019) 13–21.
  • [36] Hecker A., Schellnegger M., Hofmann E., Luze H., et al.: The impact of resveratrol on skin wound healing, scarring and aging.International Wound Journal 19 (2022) 9–28.
  • [37] Salehi B., Mishra A.P., Nigam M., Sener B., Kilic M., Sharifi-Rad M., Fokou P.V.T., Martins N., Sharifi-Rad J.: Resveratrol: A Double-Edge Sword in Health Benefits. Biomedicines 6 (2018) 91.
  • [38] Ren B., Kwah M.X.-Y., Liu C., Ma Z., Shanmugam M.K., Ding L., Xiang X., Ho P.C.-L., et al.: Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Letters 515 (2021) 63–72.
  • [39] Srinivasulu C., Ramgopal M., Ramanjaneyulu G., Anurdha C.M., Suresh K.C.: Syringic acid (SA) – A Review of Its Occurrence, Biosynthesis, Pharmacological and Industrial Importance. Biomedicine & Pharmacotherapy 108 (2018) 547-557.
  • [40] Bartel I., Mandryk I., Horbańczuk J.O., Wierzbicka A.; Koszarska M.: Nutraceutical Properties of Syringic Acid in Civilization Diseases – Review. Nutrients 16 (2024) 10.
  • [41] Guasch-Jane M.R., Ibern-Gomez M., Andreas-Lacueva C., Jauregui O., Lamuela-Raventós R.M.: Liquid Chromatography with Mass Spectrometry in Tandem Mode Applied for the Identification of Wine Markers in Residues from Ancient Egyptian Vessels. Analytical Chemistry 76 (2004) 1672-1677.
  • [42] Minsart M., Van Vlierberghe S., Dubruel, P., Mignon A.: Commercial wound dressings for the treatment of exuding wounds: An in-depth physico-chemical comparative. Burns & Trauma 10 (2022) tkac024.
  • [43] Li B., Kennedy J.F., Peng J.L., Yie X., Xie B.J.: Preparation and performance evaluation of glucomannan-chitosan-nisin ternary antimicrobial blend film. Carbohydrate Polymers 65 (2006) 488–494.
  • [44] Da Silva D.F., Ogawa C.Y.L., Sato F., Neto A.M., et al.: Chemical and physical characterization ofKonjac glucomannan-based powders byFTIRand13CMASNMR.Powder Technology 361(2020)610–616.
  • [45] Queiroz M.F., Melo K.R.T., Sabry D.A., Sassaki G.L., Rocha H.A.O.: Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation. Marine Drugs 13 (2015) 141–158.
  • [46] Hosseini S.F., Rezaei M., Zandi M., Farahmandghavi F.: Fabrication of bionanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocolloids 44 (2015) 172–182.
  • [47] Yilmaz P., Demirhan E., Ozbek B.: Development of Ficus carica Linn leaves extract incorporated chitosan films for active food packaging materials and investigation of their properties. Food Bioscience 46 (2022) 101542.
  • [48] Hong T., Yin J.-Y., Nie S.-P., Xie M.-Y.: Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chemistry X 12 (2021) 100168.
  • [49] Mendes J.B.E., Riekes M.K., de Oliveira V.M., et al.: PHBV/PCL Microparticles for Controlled Release of Resveratrol: Physicochemical Characterization, Antioxidant Potential, and Effect on Hemolysis of Human Erythrocytes. The Scientific World Journal 2012 (2012) 542937.
  • [50] Espina A., Sanchez-Cortes S., Jurasekova Z.: Vibrational Study (Raman, SERS, and IR) of Plant Gallnut Polyphenols related to the Fabrication of Iron Gall Inks. Molecules27 (2022) 279.
  • [51] Pastor C., Sanchez-Gonzalez L., Chiralt A., Chafer M., GonzalezMartinez C.: Physical and antioxidant properties of chitosan and methylcellulose based films containing resveratrol. Food Hydrocolloids 30 (2013) 272–280.
  • [52] Samprasit W., Chamsai B., Settharaksa S., Opanasopit P.: Synergistic antibacterial activity of alpha mangostin polymer-based films against infected wound. Journal of Drug Delivery Science and Technology 57 (2020) 101629.
  • [53] Zhang L., Zhang M., Mujumdar A.S., Wang D., Ma Y.: Novel multilayer chitosan/emulsion-loaded syringic acid grafted apple pectin film with sustained release for active food packaging. Food Hydrocolloids 142 (2023) 108823.
  • [54] Zhang Y., Li T., Zhang H., Zhang H., Chi Y., Zhao X., et al.: Blending with shellac to improve water resistance of soybean protein isolate film. Journal of Food Process Engineering 43 (2020) e12515.
  • [55] Hussein M.A.A: Convenient Mechanism for the Free Radical Scavenging Activity of Resveratrol. International Journal of Phytomedicine 3 (2011) 459-469.
  • [56] Skroza D., Simat V., Vrdoljak L., et al.: Investigation of Antioxidant Synergism and Antagonisms among Phenolic Acids in the Model Matrices Using FRAP and ORAC Methods. Antioxidants 11 (2022) 1784.
  • [57] Rizzi V., Longo A., Placido T., Fini P., et al.: A comprehensive investigation of dye-chitosan blended films for green chemistry applications. Journal of Applied Polymer Science 135 (2017) 45945.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df9167c1-cdf8-4fb8-a4a6-78532c264039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.